中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 初中數學 > 題目詳情
精英家教網直線y=x+a和拋物線y=x2+bx+c都經過A(1,0)、B(3,2)兩點,且不等式x+a>x2+bx+c 的整數解為K,若關于x的方程x2-(m2+5)x+2m2+6=0的兩實根之差的絕對值為n,且n滿足n=2(K+1),求m的值.
分析:利用待定系數法首先求出兩函數的解析式,再結合圖象得出k的值,再利用根與系數的關系求出m的值.
解答:解:∵y=x+a和拋物線y=x2+bx+c都經過A(1,0)、B(3,2)兩點,
∴將A(1,0)代入y=x+a,
得:y=x-1,
將A(1,0)、B(3,2)兩點,代入拋物線y=x2+bx+c解析式得:
1+b+c=0
9+3b+c=2

解得:b=-3,c=2,
∴拋物線解析式為:y=x2-3x+2,
∵不等式x+a>x2+bx+c 的整數解為K,
即:x-1>x2-3x+2的解集,
結合兩圖象的交點坐標以及圖象即可得出解集,
1<x<3,
∴整數解為K為:2,
∵關于x的方程x2-(m2+5)x+2m2+6=0的兩實根之差的絕對值為n,且n滿足n=2(K+1),
∴n=2(K+1)=6,
∵|x1-x2|=6,
∴(x1-x22=36,
∴(x1+x22-4x1x2=36,
∴(m2+5)2-4(2m2+6)=36,
整理得:m4+2m2-35=0,
解得:m2=5或-7(不合題意舍去),
∴m=±
5
點評:此題主要考查了二次函數與一次函數綜合題目,利用函數圖象判斷函數值的大小問題以及利用根與系數的關系進行計算是解決問題的關鍵也是中考熱點題型.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,點D,E分別是矩形OABC中AB和BC邊上的中點,點B的坐標為(6,4)
(1)寫出A,C,E,D四點的坐標;并判斷點O到直線DE的距離是否等于線段的OE長;
(2)動點F在線段DE上,FG⊥x軸于G,FH⊥y軸于H,求矩形面積最大時點F的坐標(利用圖1解答);
(3)我們給出如下定義:分別過拋物向上的兩點(不在x軸上)作x軸的垂線,如果以這兩點及垂足為頂點的矩形在這條拋物線與x軸圍成的封閉圖形內部,則稱這個矩形是這條拋物線的內接矩形,請你理解上述定義,解答下面的問題:若矩形OABC是某個拋物線的周長最大的內接矩形,求這個拋物線的解析式(利用圖2解答).
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•濟南)如圖,濟南建邦大橋有一段拋物線型的拱梁,拋物線的表達式為y=ax2+bx.小強騎自行車從拱梁一端O沿直線勻速穿過拱梁部分的橋面OC,當小強騎自行車行駛10秒時和26秒時拱梁的高度相同,則小強騎自行車通過拱梁部分的橋面OC共需
36
36
秒.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,濟南建邦大橋有一段拋物線型的拱梁,拋物線的表達式為y=ax2+bx.小強騎自行車從拱梁一端O沿直線勻速穿過拱梁部分的橋面OC,當小強騎自行車行駛10秒時和26秒時拱梁的高度相同,則小強騎自行車通過拱梁部分的橋面OC共需
36
36
s.

查看答案和解析>>

科目:初中數學 來源:第34章《二次函數》中考題集(40):34.4 二次函數的應用(解析版) 題型:解答題

如圖,點D,E分別是矩形OABC中AB和BC邊上的中點,點B的坐標為(6,4)
(1)寫出A,C,E,D四點的坐標;并判斷點O到直線DE的距離是否等于線段的OE長;
(2)動點F在線段DE上,FG⊥x軸于G,FH⊥y軸于H,求矩形面積最大時點F的坐標(利用圖1解答);
(3)我們給出如下定義:分別過拋物向上的兩點(不在x軸上)作x軸的垂線,如果以這兩點及垂足為頂點的矩形在這條拋物線與x軸圍成的封閉圖形內部,則稱這個矩形是這條拋物線的內接矩形,請你理解上述定義,解答下面的問題:若矩形OABC是某個拋物線的周長最大的內接矩形,求這個拋物線的解析式(利用圖2解答).

查看答案和解析>>

科目:初中數學 來源:2011-2012學年廣西省貴港市九年級第一次教學質量監測數學卷 題型:解答題

(本題滿分12分)

如圖所示,在平面直角坐標系中,頂點為()的拋物線交軸于點,交軸于兩點(點在點的左側), 已知點坐標為().

 

 

 

 

 

 

 

(1)求此拋物線的解析式;

(2)過點作線段的垂線交拋物線于點

如果以點為圓心的圓與直線相切,請判斷拋物

線的對稱軸與⊙有怎樣的位置關系,并給出證明;

(3)已知點是拋物線上的一個動點,且位于

兩點之間,問:當點運動到什么位置時,

面積最大?并求出此時點的坐標和的最大面積.

 

查看答案和解析>>

同步練習冊答案