已知二次函數圖像與y軸交于點(0,-4),并經過(-1,-6)和(1,2)
(1)求這個二次函數的解析式;
(2)求出這個函數的圖像的開口方向,對稱軸和頂點坐標;
(3)該函數圖像與x軸的交點坐標 .
科目:初中數學 來源: 題型:解答題
如圖,拋物線
(b,c是常數,且c<0)與
軸分別交于點A、B(點A位于點B的左側),與
軸的負半軸交于點C,點A的坐標為(-1,0).![]()
(1)請直接寫出點OA的長度;
(2)若常數b,c滿足關系式:
.求拋物線的解析式.
(3)在(2)的條件下,點P是
軸下方拋物線上的動點,連接PB、PC.設△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數,則這樣的△PBC共有多少個(直接寫出結果)?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知關于x的方程
.
(1)當k取何值時,方程有兩個實數根;
(2)若二次函數
的圖象與
軸兩個交點的橫坐標均為整數,且k為正整數,求k值并用配方法求出拋物線的頂點坐標;
(3)若(2)中的拋物線與x軸交于A、B兩點,與y軸交于C點.將拋物線向上平移n個單位,使平移后得到的拋物線的頂點落在△ABC的內部(不包括△ABC的邊界),寫出n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
天貓商城旗艦店銷售一種進價為每件20元的護眼臺燈.銷售過程中發現,每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數:
,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.
(1)設該旗艦店每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元)之間的函數關系式,并確定自變量x的取值范圍.
(2)當銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?
(3)如果旗艦店想要每月獲得的利潤不低于2000元,那么每月的成本最少需要 元?
(成本=進價×銷售量)
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
高科技發展公司投資500萬元,成功研制出一種市場需求量較大的高科技替代產品,并投入資金1500萬元作為固定投資,已知生產每件產品的成本是40元.在銷售過程中發現:當銷售單價定為100元時,年銷售量為20萬件;銷售單價每增加10元,年銷售量將減少1萬件,設銷售單價為x(元),年銷售量為y(萬件),年獲利(年獲利=年銷售額一生產成本—投資)為z(萬元).
(1)試寫出y與x之間的函數關系式(不寫x的取值范圍);
(2)試寫出z與x之間的函數關系式(不寫x的取值范圍);
(3)公司計劃,在第一年按年獲利最大確定銷售單價進行銷售;到第二年年底獲利不低于1130萬元,請借助函數的大致圖象說明:第二年的銷售單價x(元)應確定在什么范圍內?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知二次函數y=x2+bx+c過點A(1,0),C(0,﹣3)![]()
(1)求此二次函數的解析式;
(2)在拋物線上存在一點P使△ABP的面積為10,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知:關于
的二次函數y=px2-(3p+2)x+2p+2(p>0)
(1)求證:無論p為何值時,此函數圖象與x軸總有兩個交點;
(2)設這兩個交點坐標分別為(x1,0),(x2,0)(其中x1<x2)且S=x2-2x1,求S關于P的函數解析式
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖所示,直線l:y=3x+3與x軸交于點A,與y軸交于點B.把△AOB沿y軸翻折,點A落到點C,拋物線過點B、C和D(3,0).![]()
(1)求直線BD和拋物線的解析式.
(2)若BD與拋物線的對稱軸交于點M,點N在坐標軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標.
(3)在拋物線上是否存在點P,使S△PBD=6?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com