中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 初中數學 > 題目詳情

某公司銷售一種進價為20元/個的計算機,其銷售量y(萬個)與銷售價格x(元/個)的變化如下表:

價格x(元/個)

30
40
50
60

銷售量y(萬個)

5
4
3
2

同時,銷售過程中的其他開支(不含造價)總計40萬元.
(1)觀察并分析表中的y與x之間的對應關系,用所學過的一次函數,反比例函數或二次函數的有關知識寫出y(萬個)與x(元/個)的函數解析式.
(2)求出該公司銷售這種計算器的凈得利潤z(萬個)與銷售價格x(元/個)的函數解析式,銷售價格定為多少元時凈得利潤最大,最大值是多少?
(3)該公司要求凈得利潤不能低于40萬元,請寫出銷售價格x(元/個)的取值范圍,若還需考慮銷售量盡可能大,銷售價格應定為多少元?

解:(1)根據表格中數據可得出:y與x是一次函數關系,設解析式為:y=ax+b,
,解得:
∴函數解析式為:y=x+8。
(2)根據題意得:
z=(x﹣20)y﹣40=(x﹣20)(x+8)﹣40=x2+10x﹣200=(x2﹣100x)﹣200
= [(x﹣50)2﹣2500]﹣200=(x﹣50)2+50,
<0,∴x=50,z最大=50。
∴該公司銷售這種計算器的凈得利潤z與銷售價格x)的函數解析式為z=x2+10x﹣200,銷售價格定為50元/個時凈得利潤最大,最大值是50萬元。
(3)當公司要求凈得利潤為40萬元時,即(x﹣50)2+50=40,解得:x1=40,x2=60。
作函數圖象的草圖,

通過觀察函數y=(x﹣50)2+50的圖象,可知按照公司要求使凈得利潤不低于40萬元,則銷售價格的取值范圍為:40≤x≤60.
而y與x的函數關系式為:y=x+8,y隨x的增大而減少,
∴若還需考慮銷售量盡可能大,銷售價格應定為40元/個。

解析試題分析:(1)根據數據得出y與x是一次函數關系,進而利用待定系數法求一次函數解析式。
(2)根據z=(x﹣20)y﹣40得出z與x的函數關系式,應用二次函數最值原理求解即可。
(3)首先求出40=(x﹣50)2+50時x的值,從而二次函數的性質根據得出x(元/個)的取值范圍,結合一次函數的性質即可求得結果。 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

某公司營銷兩種產品,根據市場調研,發現如下信息:
信息1:銷售種產品所獲利潤(萬元)與所售產品(噸)之間存在二次函數關系
.當時, ;當時,
信息2:銷售種產品所獲利潤 (萬元)與所售產品(噸)之間存在正比例函數關系
根據以上信息,解答下列問題:(1)求二次函數解析式;
(2)該公司準備購進兩種產品共10噸,請設計一個營銷方案,使銷售兩種產品獲得的利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在等邊△ABC中,AB=3,D、E分別是AB、AC上的點,且DE∥BC,將△ADE沿DE翻折,與梯形BCED重疊的部分記作圖形L.

(1)求△ABC的面積;
(2)設AD=x,圖形L的面積為y,求y關于x的函數解析式;
(3)已知圖形L的頂點均在⊙O上,當圖形L的面積最大時,求⊙O的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

某商家獨家銷售具有地方特色的某種商品,每件進價為40元.經過市場調查,一周的銷售量y件與銷售單價x(x≥50)元/件的關系如下表:

銷售單價x(元/件)

55
60
70
75

一周的銷售量y(件)

450
400
300
250

(1)直接寫出y與x的函數關系式:   . 
(2)設一周的銷售利潤為S元,請求出S與x的函數關系式,并確定當銷售單價在什么范圍內變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3)雅安地震牽動億萬人民的心,商家決定將商品一周的銷售利潤全部寄往災區,在商家購進該商品的貸款不超過10000元情況下,請你求出該商家最大捐款數額是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

一汽車租賃公司擁有某種型號的汽車100輛.公司在經營中發現每輛車的月租金x(元)與每月租出的車輛數(y)有如下關系:

x
3000
3200
3500
4000
y
100
96
90
80
(1)觀察表格,用所學過的一次函數、反比例函數或二次函數的有關知識求出每月租出的車輛數y(輛)與每輛車的月租金x(元)之間的關系式.
(2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.用含x(x≥3000)的代數式填表:
租出的車輛數
       
未租出的車輛數
       
租出每輛車的月收益
       
所有未租出的車輛每月的維護費
       
(3)若你是該公司的經理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,拋物線與x軸相交于點A、B,與y軸相交于點C,拋物線的對稱軸與x軸相交于點M.P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上).分別過點A、B作直線CP的垂線,垂足分別為D、E,連接點MD、ME.

(1)求點A,B的坐標(直接寫出結果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時點P的坐標;若不能,說明理由;
(3)若將“P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個動點”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時點P的坐標(直接寫出結果);若不能,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

在平面直角坐標系中,一個二次函數的圖象經過點A(1,0)、B(3,0)兩點.

(1)寫出這個二次函數的對稱軸;
(2)設這個二次函數的頂點為D,與y軸交于點C,它的對稱軸與x軸交于點E,連接AD、DE和DB,當△AOC與△DEB相似時,求這個二次函數的表達式。
[提示:如果一個二次函數的圖象與x軸的交點為A,那么它的表達式可表示為:]

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,△ABC中,AB=BC,AC=8,tanA=k,P為AC邊上一動點,設PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.

(1)證明:△PCE是等腰三角形;
(2)EM、FN、BH分別是△PEC、△AFP、△ABC的高,用含x和k的代數式表示EM、FN,并探究EM、FN、BH之間的數量關系;
(3)當k=4時,求四邊形PEBF的面積S與x的函數關系式.x為何值時,S有最大值?并求出S的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

直線與x、y軸分別交于點A、C.拋物線的圖象經過A、C和點B(1,0).

(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動點D,當D與直線AC的距離DE最大時,求出點D的坐標,并求出最大距離是多少?

查看答案和解析>>

同步練習冊答案