中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
3xa
-2x2+Inx
,其中a為常數,e為自然對數的底數.
(I)若a=1,求函數f(x)的單調區間;
(II)若函數f(x)在區間[1,2]上為單調函數,求a的取值范圍.
分析:(I)由a=1得f(x)的解析式,求導,令f′(x)>0,令f′(x)<0分別得出x的取值范圍,即f(x)的單調區間;
(II)由函數f(x)在區間[1,2]上為單調函數,得f′(x)≥0或f′(x)≤0,分離出a,把右邊看為函數,得到函數的單調性得最值,得關于a的不等式,求解得a的取值范圍.
解答:解:(Ⅰ)若a=1時,f(x)=3x-2x2+lnx,定義域為(0,+∞)
f′(x)=
1
x
-4x+3=
-4x2+3x+1
x
=
-(4x+1)(x-1)
x
(x>0)(3分)
令f'(x)>0,得x∈(0,1),令f'(x)<0,得x∈(1,+∞),
函數f(x)=3x-2x2+lnx單調增區間為(0,1),
函數f(x)=3x-2x2+lnx單調減區間為(1,+∞).(6分)
(Ⅱ).f′(x)=
3
a
-4x+
1
x

若函數f(x)在區間[1,2]上為單調函數,
f′(x)=
3
a
-4x+
1
x
在[1,2]
f′(x)=
3
a
-4x+
1
x
≥0
f′(x)=
3
a
-4x+
1
x
≤0
恒成立.
f′(x)=
3
a
-4x+
1
x
≥0
f′(x)=
3
a
-4x+
1
x
≤0
(8分)
3
a
-4x+
1
x
≥0
3
a
-4x+
1
x
≤0
在[1,2]恒成立.
3
a
≥4x-
1
x
3
a
≤4x-
1
x

h(x)=4x-
1
x
,因函數h(x)在[1,2]上單調遞增.
所以
3
a
≥h(2)
3
a
≤h(1)
3
a
15
2
3
a
≤3
,解得a<0或0<a≤
2
5
或a≥1(12分)
點評:本題考查了利用導數求函數的單調性,和其逆問題,由單調性來確定導數非負或非正,分離參數,利用函數的思想,求最值,得關于a的不等式.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=3•2x-1,則當x∈N時,數列{f(n+1)-f(n)}(  )
A、是等比數列B、是等差數列C、從第2項起是等比數列D、是常數列

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3-x
+
1
x+2
的定義域為集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有滿足條件的m的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3-x
+
1
x+2
的定義域為集合A,B={x|x<a}.
(1)若A⊆B,求實數a的取值范圍;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3-ax
a-1
(a≠1)在區間(0,4]上是增函數,則實數a的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=3-2log2x,g(x)=log2x.
(1)當x∈[1,4]時,求函數h(x)=[f(x)+1]•g(x)的值域;
(2)如果對任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案