中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如圖,在棱長為1的正方體中.

⑴求異面直線所成的角;
⑵求證:平面平面

(Ⅰ). (Ⅱ)利用線面垂直證明面面垂直 

解析試題分析:(Ⅰ)如圖,,則就是異面直線所成的角.
連接,在中,,則,
因此異面直線所成的角為

(Ⅱ) 由正方體的性質可知 , 故
正方形中,,
,∴ ;     
,∴平面. 
考點:本題考查了空間中的線面關系
點評:以正方體為載體考查立體幾何中的線面、面面、點面位置關系或體積是高考的亮點,掌握其判定性質及定理,是解決此類問題的關鍵

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,四棱錐的底面是正方形,,點在棱上.

(Ⅰ)  求證:平面平面;
(Ⅱ)  當,且時,確定點的位置,即求出的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在矩形ABCD中,AB=4,AD=2,EAB的中點,現將△ ADE沿直線DE翻折成△ADE,使平面ADE⊥平面BCDE,F為線段AD的中點.

(1)求證:EF//平面ABC;
(2)求直線AB與平面ADE所成角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(文科)(本小題滿分12分)長方體中,,是底面對角線的交點.

(Ⅰ) 求證:平面;
(Ⅱ) 求證:平面;
(Ⅲ) 求三棱錐的體積。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,且PA=1.

(1)試建立適當的坐標系,并寫出點P、B、D的坐標;
(2)問當實數a在什么范圍時,BC邊上能存在點Q,使得PQ⊥QD?
(3)當BC邊上有且僅有一個點Q使得PQ⊥QD時,求二面角Q-PD-A的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,正方體棱長為1,的中點,的中點.

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖梯形ABCD,AD∥BC,∠A=900,過點C作CE∥AB,AD=2BC,AB=BC,,現將梯形沿CE
折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設線段AB的中點為,在直線DE上是否存在一點,使得∥面BCD?若存在,請指出點的位置,并證明你的結論;若不存在,請說明理由;
   

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,三棱柱的所有棱長都為2,中點,平面

(1)求證:平面;
(2)求二面角的余弦值;
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四棱錐中,底面是邊長為2的正方形,,且,中點.

(Ⅰ)求證:平面;    
(Ⅱ)求二面角的大;
(Ⅲ)在線段上是否存在點,使得點到平
的距離為?若存在,確定點的位置;
若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案