中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知tanx=2,則sin2x+1=( 。
分析:由于tanx=2,利用同角三角函數的基本關系可得 sin2x+1=
tan2x
tan2x+ 1
+1,運算求得結果.
解答:解:∵tanx=2,∴sin2x+1=
sin2x
sin2x+ cos2x
+1=
tan2x
tan2x+ 1
+1=
4
4+1
+1=
9
5

故選B.
點評:本題主要考查同角三角函數的基本關系的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知tanx=2,則tan(
π
4
+2x)
=
-
1
7
-
1
7

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tanx=2,則
2sinx-3cosx4sinx-9cosx
=
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tanx=2,則
3sinx+2cosx3cosx-sinx
的值為
8
8

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tanx=2,則1+2sin2x=( 。

查看答案和解析>>

同步練習冊答案