已知橢圓方程為
,
、
為其左右焦點,點
為橢圓上一點,且
,
.
(1)求
的面積. (2)直線
過點
與橢圓交于
、
兩點,若
為弦![]()
的中點,求
的方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓
,過點(m,0)作圓
的切線
交橢圓G于A,B兩點.
(1)求橢圓G的焦點坐標(biāo)和離心率;
(2)將
表示為m的函數(shù),并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,橢圓
:
的左焦點為
,右焦點為
,離心率
.過
的直線交橢圓于
兩點,且△
的周長為
.![]()
(Ⅰ)求橢圓
的方程.
(Ⅱ)設(shè)動直線
:
與橢圓
有且只有一個公共點
,且與直線
相交于點
.試探究:在坐標(biāo)平面內(nèi)是否存在定點
,使得以
為直徑的圓恒過點
?若存在,求出點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓![]()
上的動點到焦點距離的最小值為
,以原點為圓心、橢圓的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過點
(2,0)的直線與橢圓
相交于
兩點,
為橢圓上一點, 且滿足
(
為坐標(biāo)原點),當(dāng)
時,求實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知長方形
,
,
,以
的中點
為
原點建立如圖所示的平面直角坐標(biāo)系
.
(1)求以A、B為焦點,且過C、D兩點的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓上任意一點為P,在x軸上有一個動點Q(t,0),其中
,探究
的最
小值
。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知直線
上有一個動點
,過點
作直線
垂直于
軸,動點
在
上,且滿足
(
為坐標(biāo)原點),記點
的軌跡為
.
(1)求曲線
的方程;
(2)若直線
是曲線
的一條切線, 當(dāng)點
到直線
的距離最短時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(18分)如圖,直線
與拋物線
交于
兩點,與
軸相交于點
,且
.
(1)求證:
點的坐標(biāo)為
;
(2)求證:
;
(3)求
的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓
的長軸長是短軸長的兩倍,且過點![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若直線
與橢圓
交于不同的兩點
,求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com