如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成直二面角
,如圖二,在二面角
中.![]()
(1)求證:BD⊥AC;
(2)求D、C之間的距離;
(3)求DC與面ABD成的角的正弦值。
(1)根據(jù)線面垂直的性質(zhì)定理來得到線線垂直的證明。關(guān)鍵的一步是利用面ABD
面ABC,得到
BD
面ABC,加以證明。
(2) 2
(3)![]()
解析試題分析: 解:(1)依題意,面ABD
面ABC,AB是交線,
而BD
AB,
BD
面ABC,又AC
面ABC,
BD⊥AC; 4分
(2)由(1)知,BD面ABC,而BC
面ABC,
BD⊥BC;Rt
DBC中,BC=BA=2,BD=2,
DC=
=
=2
; 8分
(3)取AB的中點(diǎn)H,連CH、DH和DC,![]()
△ABC是正三角形,
CH
AB,又
面ABC
面ABD,
CH
面ABD,
DH是DC在面ABD內(nèi)的射影,![]()
CDH是DC與面ABD成的角。
而CH=
BC=
,由(2)DC=2
,
sin
CDH=
=
=
即為所求。 12分
考點(diǎn):空間中點(diǎn)線面的位置關(guān)系
點(diǎn)評(píng):解決該試題的關(guān)鍵是熟練的運(yùn)用判定定理和性質(zhì)定理得到垂直的證明,以及角的求解,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在Rt
中,
,
.D、E分別是
上的點(diǎn),且
.將
沿
折起到
的位置,使
,如圖2.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)若
,求
與平面
所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四邊形
中,
,
,點(diǎn)
為線段
上的一點(diǎn).現(xiàn)將
沿線段
翻折到
(點(diǎn)
與點(diǎn)
重合),使得平面![]()
平面
,連接
,
.![]()
(Ⅰ)證明:
平面
;
(Ⅱ)若
,且點(diǎn)
為線段
的中點(diǎn),求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三棱錐S—ABC的底面是正三角形,A點(diǎn)在側(cè)面SBC上的射影H是△SBC的垂心.![]()
(1)求證:BC⊥SA
(2)若S在底面ABC內(nèi)的射影為O,證明:O為底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=
,求三棱錐S—ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點(diǎn).![]()
(1)請(qǐng)?jiān)诰段CE上找到點(diǎn)F的位置,使得恰有直線BF∥平面ACD,并證明這一事實(shí);
(2)求平面BCE與平面ACD所成銳二面角的大小;
(3)求點(diǎn)G到平面BCE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,⊙O的直徑AB=4,點(diǎn)C、D為⊙O上兩點(diǎn),且∠CAB=45o,F(xiàn)為
的中點(diǎn).沿直徑AB折起,使兩個(gè)半圓所在平面互相垂直(如圖2).![]()
(Ⅰ)求證:OF//平面ACD;
(Ⅱ)在
上是否存在點(diǎn)
,使得平面
平面ACD?若存在,試指出點(diǎn)
的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點(diǎn)E、F分別在棱BB1、CC1上,且BE=
BB1,C1F=
CC1.![]()
(1)求異面直線AE與A1 F所成角的大小;
(2)求平面AEF與平面ABC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點(diǎn),PA⊥平面ABCD.
(Ⅰ)求證:DF⊥平面PAF;
(Ⅱ)在棱PA上找一點(diǎn)G,使EG∥平面PFD,當(dāng)PA=AB=4時(shí),求四面體E-GFD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知四棱錐
中
平面
,
且
,底面為直角梯形,![]()
![]()
分別是
的中點(diǎn).![]()
(1)求證:
// 平面
;
(2)求截面
與底面
所成二面角的大小;
(3)求點(diǎn)
到平面
的距離.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com