已知橢圓
:
的長軸長為4,且過點
.
(1)求橢圓
的方程;
(2)設
、
、
是橢圓上的三點,若
,點
為線段
的中點,
、
兩點的坐標分別為
、
,求證:
.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,直線l與拋物線
相交于不同的兩點A,B.
(I)如果直線l過拋物線的焦點,求
的值;
(II)如果
,證明直線l必過一定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓長軸的左右端點分別為A,B,短軸的上端點為M,O為橢圓的中心,F為橢圓的右焦點,且
·
=1,|
|=1.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線l交橢圓于P,Q兩點,問:是否存在直線l,使得點F恰為△PQM的垂心?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經過點
且與直線
相切的動圓的圓心軌跡為
.點
在軌跡
上,且關于
軸對稱,過線段
(兩端點除外)上的任意一點作直線
,使直線
與軌跡
在點
處的切線平行,設直線
與軌跡
交于點
.
(1)求軌跡
的方程;
(2)證明:
;
(3)若點
到直線
的距離等于
,且
的面積為20,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在
軸上,焦距為
,且經過點
,直線
交橢圓于不同的兩點A,B.
(1)求
的取值范圍;,
(2)若直線
不經過點
,求證:直線
的斜率互為相反數.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,橢圓C過點
,兩個焦點為
.
(1)求橢圓C的方程;
(2)
是橢圓C上的兩個動點,如果直線
的斜率與
的斜率互為相反數,證明直線
的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系
中,已知
,
,
,直線
與線段
、
分別交于點
、
.![]()
(1)當
時,求以
為焦點,且過
中點的橢圓的標準方程;
(2)過點
作直線
交
于點
,記
的外接圓為圓
.
①求證:圓心
在定直線
上;
②圓
是否恒過異于點
的一個定點?若過,求出該點的坐標;若不過,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
、
分別是橢圓
:
的左、右焦點,點
在直線
上,線段
的垂直平分線經過點
.直線
與橢圓
交于不同的兩點
、
,且橢圓
上存在點
,使
,其中
是坐標原點,
是實數.
(Ⅰ)求
的取值范圍;
(Ⅱ)當
取何值時,
的面積最大?最大面積等于多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com