中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知雙曲線-=1(a>0,b>0)和橢圓+=1有相同的焦點,且雙曲線的離心率是橢圓離心率的兩倍,則雙曲線的方程為    .
-=1
橢圓+=1的焦點坐標為F1(-,0),F2(,0),離心率為e=.
由于雙曲線-=1與橢圓+=1有相同的焦點,
因此a2+b2=7.
又雙曲線的離心率e==,
所以=,
所以a=2,b2=c2-a2=3,
故雙曲線的方程為-=1.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知曲線C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲線C是焦點在x軸上的橢圓,求m的取值范圍;
(2)設m=4,曲線C與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線C交于不同的兩點M,N,直線y=1與直線BM交于點G.求證:A,G,N三點共線.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,兩條相交線段、的四個端點都在橢圓上,其中,直線的方程為,直線的方程為

(1)若,,求的值;
(2)探究:是否存在常數,當變化時,恒有?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的焦距為2,則m的取值是 (  )
A.7B.5C.5或7D.10

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,橢圓的中心為原點O,長軸在x軸上,離心率e=,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,=4.

(1)求該橢圓的標準方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP′Q的面積S的最大值,并寫出對應的圓Q的標準方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知橢圓C:+=1(a>0,b>0)的右焦點為F(3,0),且點(-3,)在橢圓C上,則橢圓C的標準方程為    .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

定義:關于x的不等式|x-A|<B的解集叫A的B鄰域.
已知a+b-2的a+b鄰域為區間(-2,8),其中a、b分別為橢圓+=1的長半軸長和短半軸長,若此橢圓的一焦點與拋物線y2=4x的焦點重合,則橢圓的方程為(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓+=1的焦點為F1、F2,點P在橢圓上.若|PF1|=4,則|PF2|=   ,∠F1PF2的大小為    .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,已知點B是橢圓+=1(a>b>0)的短軸位于x軸下方的端點,過B作斜率為1的直線交橢圓于點M,點P在y軸上,且PM∥x軸,·=9,若點P的坐標為(0,t),則t的取值范圍是(  )
A.0<t<3B.0<t≤3
C.0<t<D.0<t≤

查看答案和解析>>

同步練習冊答案