中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
判斷下列各對事件是否是互斥事件,并說明理由.
某小組有三名男生和兩名女生,從中任選兩名去參加比賽,其中
①恰有一名男生和兩名男生;______,理由:______;
②至少有一名男生和至少有一名女生;______,理由:______;
③至少有一名男生和全是男生;______,理由:______;
④至少有一名男生和全是女生.______,理由:______.
①是互斥事件.因為恰有一名男生實質是選出的兩名同學中“一名男生和一名女生”,它與恰有兩名男生不可能同時發生;
②不是互斥事件,因為事件“至少有一名男生”和“至少有一名女生”都包含事件“兩名男生與一名女生”和“兩名女生與一名男生”;
③不是互斥事件,因為事件“至少有一名男生”包含事件“全是男生”;
④是互斥事件,因為“至少有一名男生”和“全是女生”不可能同時發生.
故答案分別為:①是互斥事件,恰有一名男生實質是選出的兩名同學中“一名男生和一名女生”,它與恰有兩名男生不可能同時發生;
②不是互斥事件,事件“至少有一名男生”和“至少有一名女生”都包含事件“兩名男生與一名女生”和“兩名女生與一名男生”;
③不是互斥事件,事件“至少有一名男生”包含事件“全是男生”;
④是互斥事件,不可能同時發生.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

判斷下列各對事件是否是互斥事件,并說明理由.
某小組有三名男生和兩名女生,從中任選兩名去參加比賽,其中
①恰有一名男生和兩名男生;
是互斥事件
是互斥事件
,理由:
恰有一名男生實質是選出的兩名同學中“一名男生和一名女生”,它與恰有兩名男生不可能同時發生
恰有一名男生實質是選出的兩名同學中“一名男生和一名女生”,它與恰有兩名男生不可能同時發生
;
②至少有一名男生和至少有一名女生;
不是互斥事件
不是互斥事件
,理由:
事件“至少有一名男生”和“至少有一名女生”都包含事件“兩名男生與一名女生”和“兩名女生與一名男生”
事件“至少有一名男生”和“至少有一名女生”都包含事件“兩名男生與一名女生”和“兩名女生與一名男生”
;
③至少有一名男生和全是男生;
不是互斥事件
不是互斥事件
,理由:
事件“至少有一名男生”包含事件“全是男生”
事件“至少有一名男生”包含事件“全是男生”

④至少有一名男生和全是女生.
是互斥事件
是互斥事件
,理由:
不可能同時發生
不可能同時發生

查看答案和解析>>

科目:高中數學 來源:數學教研室 題型:044

判斷下列各對事件是否是互斥事件,并說明道理.某小組有3名男生和2名女生,從中任選2名同學去參加演講比賽,其中

(1)恰有1名男生和恰有2名男生;(2)至少有一名男生和至少有一名女生;(3)至少有一名男生和全是男生;(4)至少有1名男生和全是女生.

查看答案和解析>>

科目:高中數學 來源: 題型:

判斷下列各對事件是否是互斥事件,并說明道理.

某小組有3名男生和2名女生,從中任選2名同學去參加演講比賽,其中:

(1)恰有1名男生和恰有2名男生;

(2)至少有1名男生和至少有1名女生;

(3)至少有1名男生和全是男生;

(4)至少有1名男生和全是女生.

查看答案和解析>>

科目:高中數學 來源:《3.1.3 概率的基本性質》2013年同步練習(解析版) 題型:填空題

判斷下列各對事件是否是互斥事件,并說明理由.
某小組有三名男生和兩名女生,從中任選兩名去參加比賽,其中
①恰有一名男生和兩名男生;    ,理由:    ;
②至少有一名男生和至少有一名女生;    ,理由:   
③至少有一名男生和全是男生;    ,理由:    ;
④至少有一名男生和全是女生.    ,理由:   

查看答案和解析>>

同步練習冊答案