中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
在數列{an}中,已知a1=2,an+1=
2an
an+1
(n∈N*),且滿足
n
i=1
ai(ai-1)<m(m為常數,且為整數).
(1)求證:為{
1
a
-1}等比數列;
(2)求m的最小值.
分析:(1)由遞推式an+1=
2an
an+1
(n∈N*)的結構特點,可以轉化為
1
an+1
=
1
2
+
1
2an
,即
1
an+1
-1=
1
2
(
1
an
-1)
,構造得出等比數列{
1
an
-1
}
(2)通過數列{
1
an
-1
}的通項公式求出ai(ai-1)=
2i
(2i-1)2
(i=1,2,3,…),利用放縮法求的2≤
n
i=1
ai(ai-1)≤3,故m的最小值為3.
解答:解:(1)由an+1=
2an
an+1
(n∈N*),得
1
an+1
=
1
2
+
1
2an
,即
1
an+1
-1=
1
2
(
1
an
-1)

1
a1
-1
=-
1
2

所以數列{
1
an
-1
}是首項為-
1
2
,公比為
1
2
的等比數列,
(2)由(1)得
1
an
-1
=-
1
2
•(
1
2
)n-1
=-(
1
2
)
n

∴an=
2n
2n-1
,故ai(ai-1)=
2i
(2i-1)2
(i=1,2,3,…)
當i≥2時,ai(ai-1)=
2i
(2i-1)2
2i
(2i-1)(2i-2) 
=
2i-1
(2i-1)(2i-1-1) 
=
1
2i-1-1 
-
1
2i-1 

n
i=1
ai(ai-1)=
n
i=1
2i
(2i-1)2
21
(21-1)2
+
n
i=2
(
1
2i-1-1 
-
1
2i-1 
)
=3-
1
2n-1 
<3,
n
i=1
ai(ai-1)=
n
i=1
2i
(2i-1)2
21
(21-1)2
=2,
故m的最小值為3.
點評:本題考查數列的遞推公式和通項公式,不等式恒成立問題,考查轉化構造、放縮的解題和證明方法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在數列{an}中,已知a1=
1
4
an+1
an
=
1
4
,bn+2=3log 
1
4
an(n∈N*).
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)求證:數列{bn}是等差數列;
(Ⅲ)設cn=
3
bnbn+1
,Sn是數列{cn}的前n項和,求使Sn
m
20
對所有n∈N*都成立的最小正整數m.

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,已知a1=1,an+1=
an1+2an
(n∈N+)

(1)求a2,a3,a4,并由此猜想數列{an}的通項公式an的表達式;
(2)用適當的方法證明你的猜想.

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,已知a1=1,a2=2,且an+2等于an•an+1的個位數(n∈N*),若數列{an}的前k項和為2011,則正整數k之值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•淮南二模)在數列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N+
(1)記bn=(an-
1
2
2,n∈N+,求證:數列{bn}是等差數列;
(2)求{an}的通項公式;
(3)對?k∈N+,是否總?m∈N+使得an=k?若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

在數列{an}中,已知a1=
7
2
,an=3an-1+3n-1(n≥2,n∈N*).
(Ⅰ)計算a2,a3
(Ⅱ)求證:{
an-
1
2
3n
}是等差數列;
(Ⅲ)求數列{an}的通項公式an及其前n項和Sn

查看答案和解析>>

同步練習冊答案