中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知二次函數f(x)=x2+2(m-2)x+m-m2
(I)若函數的圖象經過原點,且滿足f(2)=0,求實數m的值.
(Ⅱ)若函數在區間[2,+∞)上為增函數,求m的取值范圍.
分析:(1)因為二次函數過原點,且滿足f(2)=0,所以把(0,0)(2,0)代入即可得m的值;
(2)由于函數在區間[2,+∞)上為增函數,所以對稱軸在區間的左側即是-(m-2)≤2,解出即可.
解答:解:(1)∵二次函數f(x)=x2+2(m-2)x+m-m2的圖象過原點,且f(2)=0,
-m2+m=0
22+2×2(m-2)+m-m2=0
,
解得
m=1或0
m=1或4

故當函數的圖象經過原點且滿足f(2)=0時,m為1;
(2)由于函數在區間[2,+∞)上為增函數,且函數的對稱軸為x=-
2(m-2)
2
=-(m-2)

所以-(m-2)≤2,解之得到m≥0
則m的取值范圍是:m≥0
點評:本題主要考查二次函數的性質及參數范圍問題,是必考內容,對其滿足的性質要熟練掌握.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設函數F(x)=f(x)-kx,x∈[-2,2],記此函數的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2-16x+q+3.
(1)若函數在區間[-1,1]上存在零點,求實數q的取值范圍;
(2)若記區間[a,b]的長度為b-a.問:是否存在常數t(t≥0),當x∈[t,10]時,f(x)的值域為區間D,且D的長度為12-t?請對你所得的結論給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•廣州一模)已知二次函數f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數.設g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知二次函數f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數f(x)的圖象的頂點是(-1,2),且經過原點,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案