已知
.
(Ⅰ)求
的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)
在
上只有一個零點,求實數(shù)
的取值范圍.
(Ⅰ)
和
;(Ⅱ)
或![]()
解析試題分析:1.本題要注意函數(shù)的定義域
.2.在比較
與
的大小時,如果直接采用作差的方式進行比較:![]()
,則很難得出答案.實際上,因為
,
,所以
.這提示我們處理問題的時候思維要相當(dāng)靈活,要眼觀六路,耳聽八方,怎么好做就怎么做.
3. 很多考生誤認(rèn)為
在
上只有一個零點
事實上漏了
.
試題解析:(Ⅰ)
的定義域為
.
∵![]()
∴
.
解
得
或
.
∴
的單調(diào)遞增區(qū)間是
和
.
(Ⅱ)由已知得
,且
.
∴
.
∴當(dāng)
或
時,
;
當(dāng)
時,
.
∴當(dāng)
時,
,此時,
單調(diào)遞減;
當(dāng)
時,
,此時,
單調(diào)遞增.
∵
,
,
∴
.
∴
在
上只有一個零點
或
.
由
得
;
由
,得
.
∴實數(shù)
的取值范圍為
或![]()
考點:函數(shù)的單調(diào)性、極值、零點、比較大小.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,![]()
(Ⅰ)當(dāng)
時,求曲線
在點
處的切線方程;
(Ⅱ)若
在
處有極值,求
的單調(diào)遞增區(qū)間;
(Ⅲ)是否存在實數(shù)
,使
在區(qū)間
的最小值是3,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是實數(shù),函數(shù)
,
和
,分別是
的導(dǎo)函數(shù),若
在區(qū)間
上恒成立,則稱
和
在區(qū)間
上單調(diào)性一致.
(Ⅰ)設(shè)
,若函數(shù)
和
在區(qū)間
上單調(diào)性一致,求實數(shù)
的取值范圍;
(Ⅱ)設(shè)
且
,若函數(shù)
和
在以
為端點的開區(qū)間上單調(diào)性一致,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(I)若函數(shù)
上是減函數(shù),求實數(shù)
的最小值;
(2)若
,使
(
)成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若在
上至少存在一點
,使得
成立,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)
時,求
的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)
在
上無零點,求
最小值;
(Ⅲ)若對任意給定的
,在
上總存在兩個不同的![]()
),使
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
是定義在
的可導(dǎo)函數(shù),且不恒為0,記
.若對定義域內(nèi)的每一個
,總有
,則稱
為“
階負(fù)函數(shù)”;若對定義域內(nèi)的每一個
,總有
,
則稱
為“
階不減函數(shù)”(
為函數(shù)
的導(dǎo)函數(shù)).
(1)若
既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)
的取值范圍;
(2)對任給的“2階不減函數(shù)”
,如果存在常數(shù)
,使得
恒成立,試判斷
是否為“2階負(fù)函數(shù)”?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
在
與
處都取得極值.
(Ⅰ) 求
,
的值;
(Ⅱ)設(shè)函數(shù)
,若對任意的
,總存在
,使得、
,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com