已知拋物線
的頂點(diǎn)為原點(diǎn),其焦點(diǎn)
到直線
:
的距離為
.設(shè)
為直線
上的點(diǎn),過(guò)點(diǎn)
作拋物線
的兩條切線
,其中
為切點(diǎn).
(Ⅰ) 求拋物線
的方程;
(Ⅱ) 當(dāng)點(diǎn)
為直線
上的定點(diǎn)時(shí),求直線
的方程;
(Ⅲ) 當(dāng)點(diǎn)
在直線
上移動(dòng)時(shí),求
的最小值.
(Ⅰ)
(Ⅱ)
(Ⅲ) ![]()
【解析】(Ⅰ) 依題意,設(shè)拋物線
的方程為
,由
結(jié)合
,
解得
. 所以拋物線
的方程為
.
(Ⅱ) 拋物線
的方程為
,即
,求導(dǎo)得![]()
設(shè)
,
(其中
),則切線
的斜率分別為
,
,
所以切線
的方程為
,即
,即![]()
同理可得切線
的方程為![]()
因?yàn)榍芯
均過(guò)點(diǎn)
,所以
,![]()
所以
為方程
的兩組解.
所以直線
的方程為
.
(Ⅲ) 由拋物線定義可知
,
,
所以![]()
聯(lián)立方程
,消去
整理得![]()
由一元二次方程根與系數(shù)的關(guān)系可得
,![]()
所以![]()
又點(diǎn)
在直線
上,所以
,
所以![]()
所以當(dāng)
時(shí),
取得最小值,且最小值為
.
(1)利用點(diǎn)到直線的距離公式直接求解C的值,便可確定拋物線方程;(2)利用求導(dǎo)的思路確定拋物線的兩條切線,借助均過(guò)點(diǎn)P,得到直線方程;(3)通過(guò)直線與拋物線聯(lián)立,借助韋達(dá)定理和拋物線定義將
進(jìn)行轉(zhuǎn)化處理,通過(guò)參數(shù)的消減得到函數(shù)關(guān)系式
是解題的關(guān)鍵,然后利用二次函數(shù)求最值,需注意變量的范圍.
【考點(diǎn)定位】本題考查拋物線的方程、定義、切線方程以及直線與拋物線的位置關(guān)系,考查學(xué)生的分析問(wèn)題的能力和轉(zhuǎn)化能力、計(jì)算能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:天驕之路中學(xué)系列 讀想用 高二數(shù)學(xué)(上) 題型:044
已知拋物線C的對(duì)稱(chēng)軸與y軸平行,頂點(diǎn)到原點(diǎn)的距離為5,若將拋物線C向上平移3個(gè)單位,則在x軸上截得的線段為原拋物線C在x軸上截得的線段的一半;若將拋物線C向左平移1個(gè)單位,則所得拋物線過(guò)原點(diǎn),求拋物線C的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com