中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知在函數f(x)y=
3
sin
πx
R
圖象上,相鄰的一個最大值點與一個最小值點恰好在圓x2+y2=R2上,則f(x)的最小正周期為(  )
A、1B、2C、3D、4
分析:先用R表示出周期,得到最大值點和最小值點的坐標后,代入到圓的方程可求出R的值,最后可得答案.
解答:解:∵x2+y2=R2,∴x∈[-R,R].
∵函數f(x)的最小正周期為2R,
∴最大值點為(
R
2
3
),相鄰的最小值點為(-
R
2
,-
3
),
代入圓方程,得R=2,∴T=4.
故選D.
點評:本題主要考查三角函數的性質--周期性.屬基礎題.三角函數兩相鄰的最大值與最小值正好等于半個周期.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知在函數f(x)=-x3+ax2+bx+c圖象上的點P(1,-2)處的切線方程為y=-3x+1.
(1)若函數f(x)在x=-2時有極值,求f(x)的表達式;
(2)在(1)的條件下,若f(x)=k在區間[-3,1]上有兩個不同的解,求實數k的取值范圍;
(3)函數f(x)在區間[-2,0]上單調遞增,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知在函數f(x)=-x3+ax2+bx+c圖象上的點P(1,-2)處的切線方程為y=-3x+1.
(1)若函數f(x)在x=-2時有極值,求f(x)的表達式;
(2)在(1)的條件下,若f(x)=k在區間[-3,1]上有兩個不同的解,求實數k的取值范圍;
(3)函數f(x)在區間[-2,0]上單調遞增,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:蘭州一模 題型:單選題

已知在函數f(x)y=
3
sin
πx
R
圖象上,相鄰的一個最大值點與一個最小值點恰好在圓x2+y2=R2上,則f(x)的最小正周期為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省湖州市菱湖中學高二(下)3月月考數學試卷(理科)(解析版) 題型:解答題

已知在函數f(x)=-x3+ax2+bx+c圖象上的點P(1,-2)處的切線方程為y=-3x+1.
(1)若函數f(x)在x=-2時有極值,求f(x)的表達式;
(2)在(1)的條件下,若f(x)=k在區間[-3,1]上有兩個不同的解,求實數k的取值范圍;
(3)函數f(x)在區間[-2,0]上單調遞增,求實數b的取值范圍.

查看答案和解析>>

同步練習冊答案