.已知拋物線C的頂點在坐標(biāo)原點,焦點在x軸上,直線

與拋物線C相交
于A,B兩點,若

是AB的中點,則拋物線C的方程為_______________.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線

的準(zhǔn)線過雙曲線

的一個焦點,則雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知

是橢圓

的左、右焦點,過點

作
傾斜角為

的動直線

交橢圓于

兩點.當(dāng)

時,

,且

.
(1)求橢圓的離心率及橢圓的標(biāo)準(zhǔn)方程;
(2)求△

面積的最大值,并求出使面積達(dá)到最大值時直線

的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
已知橢圓G與雙曲線

有相同的焦點,且過點

.
(1)求橢圓G的方程;

(2)設(shè)

、

是橢圓G的左焦點和右焦點,過

的直線

與橢圓G相交于A、B兩點,請問

的內(nèi)切圓M的面積是否存在最大值?若存在,求出這個最大值及直線

的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)

如圖,已知橢圓
C1的中心在原點
O,長軸左、右端點
M,
N在
x軸上,橢圓
C2的短軸為
MN,且
C1,
C2的離心率都為
e,直線
l⊥MN,
l與
C1交于兩點,與
C2交于兩點,這四點按縱坐標(biāo)從大到小依次為
A,
B,
C,
D.
(I)設(shè)

,求

與

的比值;
(II)當(dāng)
e變化時,是否存在直線
l,使得
BO∥
AN,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若曲線

與曲線

有四個不同的交點,則實數(shù)

的取值范圍是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
拋物線

的焦點坐標(biāo)是___________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)設(shè)橢圓

的焦點分別為

,
直線

交

軸于于點A,且

。
(1)試求橢圓的方程;
(2)過

、

分別作互相垂直的兩直線與橢圓分別
交于D、E、M、N四點(如圖所示),若四邊形

DMEN的面積為

,求DE的直線方程。
查看答案和解析>>