數(shù)列{
}的前n項和為
,
.
(Ⅰ)設(shè)
,證明:數(shù)列
是等比數(shù)列;
(Ⅱ)求數(shù)列
的前
項和
;
(Ⅲ)若
,數(shù)列
的前
項和
,證明:![]()
.
(Ⅰ)
(Ⅱ)
(Ⅲ)詳見解析
解析試題分析:(Ⅰ) 由
,令
可求
,
時,利用
可得
與
之間的遞推關(guān)系,構(gòu)造等可證等比數(shù)列;(Ⅱ) 由(Ⅰ)可求
,利用錯位相減法可求數(shù)列的和;(Ⅲ)由(Ⅱ)進而可求
,利用
(
)進行不等式放縮,求數(shù)列{
}的和即可求證.
試題解析:(Ⅰ)因為
,
所以 ① 當(dāng)
時,
,則
, (1分)
② 當(dāng)
時,
, (2分)
所以
,即
,
所以
,而
, (3分)
所以數(shù)列
是首項為
,公比為
的等比數(shù)列,所以
. (4分)
(Ⅱ)由(1)得
.
所以 ①
,
②
, (5分)
②-①得:
, (7分)
. (9分)
(Ⅲ)由(Ⅰ)知
(10分)
(1)當(dāng)
時,
成立; (11分)
(2)當(dāng)
時,
,
, (13分)
所以
. (14分)
(本題放縮方法不唯一,請酌情給分)
考點: 1.遞推關(guān)系;2.等比數(shù)列的概念;3.數(shù)列求和和不等式放縮.
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩大超市同時開業(yè),第一年的全年銷售額均為a萬元,由于經(jīng)營方式不同,甲超市前n年的總銷售額為
(n2-n+2)萬元,乙超市第n年的銷售額比前一年銷售額多
a萬元.
(1)設(shè)甲、乙兩超市第n年的銷售額分別為an、bn,求an、bn的表達式;
(2)若其中某一超市的年銷售額不足另一超市的年銷售額的50%,則該超市將被另一超市收購,判斷哪一超市有可能被收購?如果有這種情況,將會出現(xiàn)在第幾年?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)正項數(shù)列
an
為等比數(shù)列,它的前n項和為Sn,a1=1,且
.
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)已知
是首項為1,公差為2的等差數(shù)列,求數(shù)列
的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列
中,
,若函數(shù)
,在點
處切線過點![]()
(1)求證:數(shù)列
為等比數(shù)列;
(2)求數(shù)列
的通項公式和前n項和公式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項均為正數(shù)的數(shù)列
的前
項和為
,數(shù)列
的前
項和為
,且
.
⑴證明:數(shù)列
是等比數(shù)列,并寫出通項公式;
⑵若
對
恒成立,求
的最小值;
⑶若
成等差數(shù)列,求正整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知單調(diào)遞增的等比數(shù)列
滿足:
,且
是
、
的等差中項.
(1)求數(shù)列
的通項公式;
(2)設(shè)
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若bn=(2n+1)an+2n+1,數(shù)列{bn}的前n項和為Tn.求滿足不等式>2 010的n的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com