中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
如圖,在四面體ABCD中,BC⊥面ACD,DA=DC,E、F分別為AB、AC的中點.
(1)求證:直線EF∥面BCD;
(2)求證:面DEF⊥面ABC.
分析:(1)由三角形的中位線定理可得EF∥BC,再根據線面平行的判定定理即可證得結論.
(2)要證面面垂直,根據判定定理在其中一個平面內找一條直線垂直于另一個平面即可;根據題意可得BC⊥DF,DF⊥AC,
于是得到DF⊥平面ABC.
解答:證明:(1)∵E、F分別為AB、AC的中點,∴EF∥BC.
又∵BC?平面BCD,EF?平面BCD,
∴EF∥平面BCD.
(2)∵DA=DC,點F為AC的中點,
∴DF⊥AC,
又∵BC⊥面ACD,DF?面ACD,∴BC⊥DF,
又∵DF∩AC=F,
∴DF⊥平面ABC.
又∵DF?平面DEF,
∴平面DEF⊥平面ABC.
點評:本題考查了線面平行和面面垂直,理解判定定理和性質定理是解決問題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在正三角形ABC中,D,E,F分別為各邊的中點,G,H分別為DE,AF的中點,將△ABC沿DE,EF,DF折成正四面體P-DEF,則四面體中異面直線PG與DH所成的角的余弦值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在正三角形ABC中,D,E,F分別為各邊的中點,G,H分別為DE,AF的中點,將△ABC沿DE,EF,DF折成正四面體P-DEF,則四面體中異面直線PG與DH所成的角的余弦值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•武漢模擬)如圖,在四面體A-BCD中,AB=AD=
2
,BD=2,DC=1
,且BD⊥DC,二面角A-BD-C大小為60°.
(1)求證:平面ABC上平面BCD;
(2)求直線CD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在四面體ABCD中,DA=DB=DC=1,且DA,DB,DC兩兩互相垂直,點O是△ABC的中心,將△DAO繞直線DO旋轉一周,則在旋轉過程中,直線DA與BC所成角的余弦值的取值范圍是( 。
A、[0, 
6
3
]
B、[0, 
3
2
]
C、[0, 
2
2
]
D、[0, 
3
3
]

查看答案和解析>>

同步練習冊答案