中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
如圖,在長方體中,是線段的中點.
(Ⅰ)求證:平面
(Ⅱ)求平面把長方體 分成的兩部分的體積比.
(Ⅰ)詳見解析;(Ⅱ).

試題分析:1. 第(Ⅰ)問有一點難度,需要作輔助線,這幾乎是用幾何法證明線面平行、線面垂直的必經之路了,對此考生要有意識.2.第(Ⅱ)問的解決比較簡單,并且不依賴于第(Ⅰ)問,有的考生第(Ⅰ)問沒有做出來,但第(Ⅱ)問做出來了,這是一種好的現象,說明考生能夠把會做的做對了.
試題解析:(Ⅰ)證明:設的中點為,連接.

根據題意得, ,且.
∴四邊形是平行四邊形.
.
平面平面
平面.
(Ⅱ)解:∵

∴空間幾何體的體積
.
,即平面把長方體
分成的兩部分的體積比為.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,棱底面,=1,的中點.

(1)證明平面平面; 
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,曲線處的切線過點.
(Ⅰ)求函數的解析式;
(Ⅱ)當時,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,六棱錐的底面是邊長為1的正六邊形,底面
(Ⅰ)求證:平面平面
(Ⅱ)若直線PC與平面PDE所成角的正弦值為,求六棱錐高的大小。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在中,上的高,沿折起,使.
(Ⅰ)證明:平面⊥平面
(Ⅱ)若,求三棱錐的表面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

集合,它們之間的包含關系是                     

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

一個正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點,則在原來的正方體中(     )

A.              B.
C. AB與CD所成的角為    D. AB與CD相交

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在五面體中,四邊形是正方形,平面

(1)求異面直線所成角的余弦值;
(2)證明:平面
(3)求二面角的正切值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知AC⊥平面CDE,BD//AC,△ECD為等邊三角形,F為ED邊的中點,CD=BD=2AC=2

(1)求證:CF∥面ABE;
(2)求證:面ABE⊥平面BDE:
(3)求三棱錐F—ABE的體積。

查看答案和解析>>

同步練習冊答案