Δ
兩個頂點
的坐標分別是
,邊
所在直線的斜率之積等于
,求頂點
的軌跡方程,并畫出草圖。
科目:高中數學 來源: 題型:解答題
已知橢圓
:![]()
的離心率為
,過右焦點
且斜率為
的直線交橢圓
于
兩點,
為弦
的中點,
為坐標原點.
(1)求直線
的斜率
;
(2)求證:對于橢圓
上的任意一點
,都存在
,使得
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓
:
的左、右焦點分別為
,已知橢圓
上的任意一點
,滿足
,過
作垂直于橢圓長軸的弦長為3.![]()
(1)求橢圓
的方程;
(2)若過
的直線交橢圓于
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
選修4-4:坐標系與參數方程
在直角坐標系
中,直線L的方程為x-y+4=0,曲線C的參數方程為![]()
(1)求曲線C的普通方程;
(2)設點Q是曲線C上的一個動點,求它到直線L的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
直角坐標平面上,
為原點,
為動點,
,
. 過點
作
軸于
,過
作
軸于點
,
. 記點
的軌跡為曲線
,
點
、
,過點
作直線
交曲線
于兩個不同的點
、
(點
在
與
之間).
(1)求曲線
的方程;
(2)是否存在直線
,使得
,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示的曲線
是由部分拋物線
和曲線
“合成”的,直線
與曲線
相切于點
,與曲線
相切于點
,記點
的橫坐標為
,其中
.![]()
(1)當
時,求
的值和點
的坐標;
(2)當實數
取何值時,
?并求出此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知拋物線C1:y2=4x的焦點與橢圓C2:
的右焦點F2重合,F1是橢圓的左焦點;
(Ⅰ)在
ABC中,若A(-4,0),B(0,-3),點C在拋物線y2=4x上運動,求
ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個公共點,且∠PF1F2=
,∠PF2F1=
,求cos![]()
的值及
PF1F2的面積。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com