中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯表:

 
男性
女性
合計
反感
10
 
 
不反感
 
8
 
合計
 
 
30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
(Ⅰ)請將上面的列聯表補充完整(在答題卡上直接填寫結果,不需要寫求解過程),并據此資料分析反感“中國式過馬路 ”與性別是否有關?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數為X,求X的分布列和數學期望.
P(K2>k)
0.05
0.025
0.010
0.005
k
3.841
5.024
6.635
7.879
下面的臨界值表供參考:
(參考公式:K2=,其中n="a+b+c+d)"

(1)沒有充足的理由認為反感“中國式過馬路”與性別有關
(2)X的分布列為:

X
0
1
2
P



∴X的數學期望為:E(X)=

解析試題分析:解:(Ⅰ)

 
男性
女性
合計
反感
10
6
16
不反感
6
8
14
合計
16
14
30
設H0:反感“中國式過馬路”與性別與否無關.由已知數據得:,∴沒有充足的理由認為反感“中國式過馬路”與性別有關.     4分
(Ⅱ)X的可能取值為0,1,2.
P(X=0)=,P(X=1)=,P(X=2)= .    6分
∴X的分布列為:
X
0
1
2
P



∴X的數學期望為:E(X)=.       10分
考點:獨立性檢驗以及分布列
點評:主要是考查了獨立性檢驗以及分布列的性質和期望公式的運用,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

將編號為1,2,3,4的四個小球,分別放入編號為1,2,3,4的四個盒子,每個盒子中有且僅有一個小球.若小球的編號與盒子的編號相同,得1分,否則得0分.記為四個小球得分總和.
(1)求時的概率;
(2)求的概率分布及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了解某校高三畢業班報考體育專業學生的體重(單位:千克)情況,將從該市某學校抽取的樣本數據整理后得到如下頻率分布直方圖.已知圖中從左至右前3個小組的頻率之比為1:2:3,其中第2小組的頻數為12.

(Ⅰ)求該校報考體育專業學生的總人數n;
(Ⅱ)若用這所學校的樣本數據來估計該市的總體情況,現從該市報考體育專業的學生中任選3人,設表示體重超過60千克的學生人數,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某射手每次射擊擊中目標的概率均為,且每次射擊的結果互不影響
(I)假設這名射手射擊3次,求至少2次擊中目標的概率
(II)假設這名射手射擊3次,每次擊中目標10分,未擊中目標得0分,在3次射擊中,若有兩次連續擊中目標,而另外一次未擊中目標,則額外加5分;若3次全部擊中,則額外加10分。用隨機變量§表示射手射擊3次后的總得分,求§的分布列和數學期望。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產量是否與年齡有關.現采用分層抽樣的方法,從中抽取了100名工人,先統計了他們某月的日平均生產件數,然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,在將兩組工人的日平均生產件數分成5組: ,,,,分別加以統計,得到如圖所示的頻率分布直方圖.
(1)從樣本中日平均生產件數不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.
(2)規定日平均生產件數不少于80件者為“生產能手”,請你根據已知條件完成的列聯表,并判斷是否有的把握認為“生產能手與工人所在的年齡組有關”?
  
附表:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

甲、乙兩位籃球運動員進行定點投籃,甲投籃一次命中的概率為,乙投籃一次命中的概率為.每人各投4個球,兩人投籃命中的概率互不影響.
(1)求甲至多命中1個球且乙至少命中1個球的概率;
(2)若規定每投籃一次命中得3分,未命中得分,求乙所得分數的概率分布和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物。根據歷年的種植經驗,一株該種作物的年收貨量(單位:kg)與它的“相近”作物株數之間的關系如下表所示:

X
1
2
3
4
Y
51
48
45
42
 
這里,兩株作物“相近”是指它們之間的直線距離不超過1米。
(Ⅰ)完成下表,并求所種作物的平均年收獲量;
Y
51
48
45
42
頻數
 
4
 
 
 (Ⅱ)在所種作物中隨機選取一株,求它的年收獲量至少為48kg的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫的交叉點記憶三角形的頂點)處都種了一株相同品種的作物。根據歷年的種植經驗,一株該種作物的年收獲量Y(單位:kg)與它的“相近”作物株數X之間的關系如下表所示:

X
1
2
3
4
Y
51
48
45
42
這里,兩株作物“相近”是指它們之間的直線距離不超過1米。

(I)從三角形地塊的內部和邊界上分別隨機選取一株作物,求它們恰好“相近”的概率;
(II)從所種作物中隨機選取一株,求它的年收獲量的分布列與數學期望。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

山東省某示范性高中為了推進新課程改革,滿足不同層次學生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設數學、物理、化學、生物和信息技術輔導講座,每位有興趣的同學可以在期間的任何一天參加任何一門科目的輔導講座,也可以放棄任何一門科目的輔導講座.(規定:各科達到預先設定的人數時稱為滿座,否則稱為不滿座)統計數據表明,各學科講座各天的滿座概率如下表:

 
信息技術
生物
化學
物理
數學
周一





周三





周五





 (Ⅰ)求數學輔導講座在周一、周三、周五都不滿座的概率;
 (Ⅱ)設周三各輔導講座滿座的科目數為,求隨即變量的分布列和數學期望.

查看答案和解析>>

同步練習冊答案