中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(2012•湖南模擬)傳說古希臘畢達哥拉斯學派的數學家經常在沙灘上畫點或用小石子表示數.他們研究過如圖所示的三角形數:

將三角形數1,3,6,10,…記為數列{an},將可被5整除的三角形數按從小到大的順序組成一個新數列{bn}.可以推測:
(Ⅰ)b3是數列{an}中的第
9
9
項;
(Ⅱ)b2k=
5k(5k+1)
2
5k(5k+1)
2
(用k表示)
分析:(Ⅰ)由題設條件及圖可得出an+1=an+(n+1),由此遞推式可以得出數列{an}的通項,由此可列舉出三角形數1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…,從而可得結論;
(II)由于2k是偶數,由(I)知,第2k個被5整除的數出現在第k組倒數第一個,故它是數列{an}中的第k×5=5k項,由此可得結論.
解答:解:(I)由題設條件可以歸納出an+1=an+(n+1),
故an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+…+2+1=
1
2
n(n+1)
由此知,三角數依次為1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…
由此知,第3個可被5整除的數為45,是數列{an}中的第9項;
(II)由于2k是偶數,由(I)知,第2k個被5整除的數出現在第k組倒數第一個,故它是數列{an}中的第k×5=5k項,
所以b2k=
5k(5k+1)
2

故答案為:9,
5k(5k+1)
2
點評:本題考查數列的遞推關系,數列的表示及歸納推理,解題的關鍵是由題設得出相鄰兩個三角形數的遞推關系,由此列舉出三角形數.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•湖南模擬)已知函數f(x)=
1
2
x2+x-(x+1)ln(x+1)

(1)判斷f(x)的單調性;
(2)記φ(x)=f′(x-1)-k(x-1),若函數φ(x)有兩個零點x1,x2(x1<x2),求證:φ′(
x1+x2
2
)>0

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•湖南模擬)已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x)
,函數f(x)=
m
n

(1)求函數f(x)的對稱中心;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=3,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•湖南模擬)設函數y=f(x)在區間(a,b)的導函數f′(x),f′(x)在區間(a,b)的導函數f″(x),若在區間(a,b)上的f″(x)<0恒成立,則稱函數f(x)在區間(a,b)上為“凸函數”,已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
,若當實數m滿足|m|≤2時,函數f(x)在區間(a,b)上為“凸函數”,則b-a的最大值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•湖南模擬)已知函數f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
(Ⅰ)求函數f(x)的最小值;
(Ⅱ)已知m∈R,命題p:關于x的不等式f(x)≥m2+2m-2對任意x∈R恒成立;命題q:函數y=(m2-1)x是增函數.若“p或q”為真,“p且q”為假,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•湖南模擬)設曲線y=xn+1(n∈N)在點(1,1)處的切線與x軸的交點的橫坐標為xn,則x1•x2•x3•…•x2012的值為
1
2013
1
2013

查看答案和解析>>

同步練習冊答案