中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

已知函數(shù)f(x)=2x3-3x2+3.
(1)求曲線y=f(x)在點x=2處的切線方程;
(2)若關(guān)于x的方程f(x)+m=0有三個不同的實根,求實數(shù)m的取值范圍.
分析:(1)將x=2分別代入原函數(shù)解析式和導函數(shù)解析式,求出切點坐標和切線斜率,由點斜式可得曲線y=f(x)在點(2,f(2))處的切線方程;
(2)若關(guān)于x的方程f(x)+m=0有三個不同的實根,則-m值在函數(shù)兩個極值之間,利用導數(shù)法求出函數(shù)的兩個極值,可得答案.
解答:解:(1)當x=2時,f(2)=7
故切點坐標為(2,7)
又∵f′(x)=6x2-6x.
∴f′(2)=12
即切線的斜率k=12
故曲線y=f(x)在點(2,f(2))處的切線方程為y-7=12(x-2)
即12x-y-17=0
(2)令f′(x)=6x2-6x=0,解得x=0或x=1
當x<0,或x>1時,f′(x)>0,此時函數(shù)為增函數(shù),
當0<x<1時,f′(x)<0,此時函數(shù)為減函數(shù),
故當x=0時,函數(shù)f(x)取極大值3,
當x=1時,函數(shù)f(x)取極小值2,
若關(guān)于x的方程f(x)+m=0有三個不同的實根,則2<-m<3,即-3<m<-2
故實數(shù)m的取值范圍為(-3,-2)
點評:本題考查的知識點是利用導數(shù)求曲線上過某點的切線方程,函數(shù)的極值,函數(shù)的零點,熟練掌握利用導數(shù)求切點斜率及極值是解答的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
(2)如果函數(shù)的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案