中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知橢圓G:.過點(m,0)作圓的切線l交橢圓G于A,B兩點.
(1)求橢圓G的焦點坐標和離心率;
(2)將表示為m的函數,并求的最大值.
(1)
(2)2
(1)由已知得,a=2,b=1,所以
所以橢圓G的焦點坐標為(-,0),(,0),離心率為
(2)由題意知,
當m=1時,切線l的方程為x=1,點A,B的坐標分別為
此時
當m=-1時,同理可得
時,設切線l的方程為

設A,B兩點的坐標分別為,則

又由l與圓相切,得,即
所以

由于當時,
時,
且當時,,所以的最大值為2.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知動圓與圓相切,且與圓相內切,記圓心的軌跡為曲線;設為曲線上的一個不在軸上的動點,為坐標原點,過點的平行線交曲線兩個不同的點.
(1)求曲線的方程;
(2)試探究的比值能否為一個常數?若能,求出這個常數,若不能,請說明理由;
(3)記的面積為的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若橢圓+=1(a>b>0)的離心率為,則雙曲線-=1的漸近線方程為(  )
A.y=±x     B.y=±2x
C.y=±4x      D.y=±x

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓過點和點
(1)求橢圓的方程;
(2)設過點的直線與橢圓交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知點F1、F2分別是橢圓的左、右焦點,A、B是以O(O
為坐標原點)為圓心、|OF1|為半徑的圓與該橢圓左半部分的兩個交點,且△F2AB是正三角形,則此橢圓的離心率為(   )
A.       B.        C.        D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓的左焦點為,直線與橢圓相交于點,當△FAB的周長最大時,的面積是____________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設圓錐曲線r的兩個焦點分別為,若曲線r上存在點P滿足,則曲線r的離心率等于(   )
A.
B.或2
C.或2
D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的長軸在軸上,焦距為,則等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知雙曲線C的焦點、實軸端點恰好是橢圓的長軸的端點、焦點,則雙曲線C的方程為_______.

查看答案和解析>>

同步練習冊答案