中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知可導函數y=f(x)在點P(x,f(x))處切線為l:y=g(x)(如圖),設F(x)=f(x)-g(x),則( )

A.F′(x)=0,x=x是F(x)的極大值點
B.F′(x)=0,x=x是F(x)的極小值點
C.F′(x)≠0,x=x不是F(x)的極值點
D.F′(x)≠0,x=x是F(x)的極值點
【答案】分析:由F(x)=f(x)-g(x)在x處先減后增,得到F′(x)=0,x=x是F(x)的極小值點.
解答:解:∵可導函數y=f(x)在點P(x,f(x))處切線為l:y=g(x),
∴F(x)=f(x)-g(x)在x處先減后增,
∴F′(x)=0,
x=x是F(x)的極小值點.
故選B.
點評:本題考查函數在某點取得極值的條件的應用,是中檔題.解題時要認真審題,仔細解答,注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知可導函數y=f(x)在點P(x0,f(x0))處切線為l:y=g(x)(如圖),設F(x)=f(x)-g(x),則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知可導函數y=f(x)滿足f(x-2)=f(-x),函數y=f(x)的圖象在點(1,f(1))處的切線方程為y=2x+1,則f′(1)=
2
2
,函數y=f(x)的圖象在點(-3,f(-3))處的切線方程為
y=-2x-3
y=-2x-3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知可導函數y=f(x)滿足f(x-2)=f(-x),函數y=f(x)的圖象在點(1,f(1))處的切線方程為y=2x+1,則f′(1)=______,函數y=f(x)的圖象在點(-3,f(-3))處的切線方程為______.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年北京市海淀區高三(上)期中數學試卷(文科)(解析版) 題型:填空題

已知可導函數y=f(x)滿足f(x-2)=f(-x),函數y=f(x)的圖象在點(1,f(1))處的切線方程為y=2x+1,則f′(1)=    ,函數y=f(x)的圖象在點(-3,f(-3))處的切線方程為   

查看答案和解析>>

同步練習冊答案