已知圓的極坐標(biāo)方程為:
.
(1)將極坐標(biāo)方程化為普通方程;
(2)若點(diǎn)
在該圓上,求
的最大值和最小值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線L的參數(shù)方程為
(t為參數(shù))
(1)寫出直線L的普通方程與Q曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過伸縮變換
得到曲線C
,設(shè) M(x,y)為C
上任意一點(diǎn),求
的最小值,并求相應(yīng)的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知極坐標(biāo)系的原點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸為
軸正半軸,直線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)寫出
的直角坐標(biāo)方程,并說明
是什么曲線?
(2)設(shè)直線
與曲線
相交于
、
兩點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
).若直線l過點(diǎn)P,且傾斜角為
,圓C以M為圓心, 4為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線
的參數(shù)方程為
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.求:
(1)求圓
的直角坐標(biāo)方程;
(2)若
是直線
與圓面
≤
的公共點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線
的直角坐標(biāo)方程為
. 以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系. P是曲線
上一點(diǎn),
,
,將點(diǎn)P繞點(diǎn)O逆時針旋轉(zhuǎn)角
后得到點(diǎn)Q,
,點(diǎn)M的軌跡是曲線
.
(1)求曲線
的極坐標(biāo)方程;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,已知圓C經(jīng)過點(diǎn)P
,圓心為直線ρsin
=-
與極軸的交點(diǎn),求圓C的極坐標(biāo)方程.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
(坐標(biāo)系與參數(shù)方程選講選做題) 在極坐標(biāo)系中,若過點(diǎn)
且與極軸垂直的直線交曲線
于
、
兩點(diǎn),則
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com