設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2﹣x),當(dāng)x∈[﹣2,0)時(shí),f(x)=
﹣1,若在區(qū)間(﹣2,6)內(nèi)的關(guān)于x的方程f(x)﹣logga(x+2)=0(a>0且a≠1)恰有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( )
|
| A. | ( | B. | (1,4) | C. | (1,8) | D. | (8,+∞) |
考點(diǎn):
根的存在性及根的個(gè)數(shù)判斷.
專題:
計(jì)算題;作圖題;函數(shù)的性質(zhì)及應(yīng)用.
分析:
在同一直角坐標(biāo)系中作出f(x)與h(x)=loga(x+2)在區(qū)間(﹣2,6)內(nèi)的圖象,結(jié)合題意可得到關(guān)于a的關(guān)系式,從而得到答案.
解答:
解:∵當(dāng)x∈[﹣2,0)時(shí),f(x)=
﹣1,
∴當(dāng)x∈(0,2]時(shí),﹣x∈[﹣2,0),
∴f(﹣x)=
﹣1=
﹣1,又f(x)是定義在R上的偶函數(shù),
∴f(x)=
﹣1(0<x≤2),又f(2+x)=f(2﹣x),
∴f(x)的圖象關(guān)于直線x=2對(duì)稱,且f(4+x)=f(﹣x)=f(x),
∴f(x)是以4為周期的函數(shù),
∵在區(qū)間(﹣2,6)內(nèi)的關(guān)于x的方程f(x)﹣loga(x+2)=0(a>0且a≠1)恰有4個(gè)不同的實(shí)數(shù)根,
令h(x)=loga(x+2),即f(x)=h(x)=loga(x+2)在區(qū)間(﹣2,6)內(nèi)有有4個(gè)交點(diǎn),
在同一直角坐標(biāo)系中作出f(x)與h(x)=loga(x+2)在區(qū)間(﹣2,6)內(nèi)的圖象,
∴0<loga(6+2)<1,
∴a>8.
故選D.
![]()
點(diǎn)評(píng):
本題考查根的存在性及根的個(gè)數(shù)判斷,求得f(x)的解析式,作出f(x)與h(x)=loga(x+2)在區(qū)間(﹣2,6)內(nèi)的圖象是關(guān)鍵,考查作圖能力與數(shù)形結(jié)合的思想,屬于難題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
| 3 |
| 2 |
| 5 |
| 2 |
| 7 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| A、f(x)=-x2+6x-8 | B、f(x)=x2-10x+24 | C、f(x)=x2-6x+8 | D、f(x)=x2-6x+8+a |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com