中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
給出下列命題:
①y=tanx在定義域上單調遞增;   
②若銳角α、β滿足cosα>sinβ,則α+β<
π
2
;   
③f(x)是定義在[-1,1]上的偶函數,且在[-1,0]上是增函數,若θ∈(0,
π
4
)
,則f(sinθ)>f(cosθ); 
④函數y=lg(sinx+
sin2x+1
)有無奇偶性不能確定. 
⑤函數y=4sin(2x-
π
3
)的一個對稱中心是(
π
6
,0); 
⑥方程tanx=sinx在(-
π
2
π
2
)
上有3個解;
其中真命題的序號為
②③⑤⑥
②③⑤⑥
分析:由正切函數的單調性,可以判斷①真假;根據正弦函數的單調性,結合誘導公式,可以判斷②的真假;根據函數奇偶性與單調性的綜合應用,可以判斷③的真假;根據函數奇偶性的定義,及對數的運算性質,可判斷④的真假.根據正弦型函數的對稱性,我們可以判斷⑤的真假.對于⑥:要求一個函數零點,只要使得這個函數等于0,把其中一個移項,得到兩個基本初等函數,在規定的范圍中畫出函數的圖象,看出交點的個數.
解答:解:由正切函數的單調性可得①“y=tanx在定義域上單調遞增”為假命題;
若銳角α、β滿足cosα>sinβ,即sin(
π
2
-α)>sinβ,即
π
2
-α>β,則α+β<
π
2
,故②為真命題;
若f(x)是定義在[-1,1]上的偶函數,且在[-1,0]上是增函數,則函數在[0,1]上為減函數,若θ∈(0,
π
4
),則0<sinθ<cosθ<1,則f(sinθ)>f(cosθ),故③為真命題;
函數y=f(x)=lg(sinx+
sin2x+1
)的定義域為R,且f(-x)=lg[sin(-x)+
sin2(-x)+1
)=lg(-sinx+
sin2x+1
),此時f(x)+f(-x)=0,則函數y=lg(sinx+
sin2x+1
)為奇函數,故④錯誤;
由函數y=4sin(2x-
π
3
)的對稱性可得(
π
6
,0)是函數的一個對稱中心,故⑤為真命題;
∵f(x)=sinx-tanx=0,∴sinx=tanx,只要看出兩個曲線在區間(-
π
2
π
2
)上的交點個數就可以,
根據正弦曲線和正切曲線,都是奇函數,且(0,
π
2
)時sinx<tanx,即1個零點.故⑥正確.
故答案為:②③⑤⑥.
點評:本題考查的知識點是命題的真假判斷與應用,函數單調性的性質,偶函數,正弦函數的對稱性,是對函數性質的綜合考查,熟練掌握基本初等函數的性質是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下列命題:①y=lg(sinx+
1+sin2x
)
是奇函數;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數f(x)=2x-x2在R上有3個零點;
④函數y=sin2x的圖象向左平移
π
4
個單位,得到函數y=sin(2x+
π
4
)
的圖象.
其中正確命題的序號是
 
.(把正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題
①函數y=tan(3x-
π
2
)
的周期是
π
3

②角α終邊上一點P(-3a,4a),且a≠0,那么cosα=-
3
5

③函數y=cos(2x-
π
3
)
的圖象的一個對稱中心是(-
π
12
,0)

④已知f(x)=sin(ωx+2)滿足f(x+2)+f(x)=0,則ω=
π
2

其中正確的個數有(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
y=
x2+3
x2+2
的最小值為2;       
②若a>b,則
1
a
1
b
成立的充要條件是ab>0;
③若不等式x2+ax-4<0對任意x∈(-1,1)恒成立,則實數a的取值范圍為(-3,3).
真命題的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①y=tanx在其定義域上是增函數;
②函數y=|sin(2x+
π
3
)|
的最小正周期是
π
2

p:
π
4
<α<
π
2
;q:f(x)=logtanαx在(0,+∞)內是增函數,則p是q的充分非必要條件;
④函數y=lg(sinx+
sin2x+1
)
的奇偶性不能確定.
其中正確命題的序號是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列命題:
①y=x2是冪函數;
②函數f(x)=2x-x2的零點有2個;
③(x+
1
x
+2)5展開式的項數是6項;
④函數y=sinx(x∈[-π,π])圖象與x軸圍成的圖形的面積是S=
π
sinxdx;
⑤若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,則P(ξ≥2)=0.2.
其中真命題的序號是
①⑤
①⑤
(寫出所有正確命題的編號).

查看答案和解析>>

同步練習冊答案