已知橢圓
的長軸長是短軸長的兩倍,焦距為
.
(1)求橢圓
的標準方程;
(2)設不過原點
的直線
與橢圓
交于兩點
、
,且直線
、
、
的斜率依次成等比數列,求△
面積的取值范圍.
(1)
;(2)△
面積的取值范圍為
。
解析試題分析:(1)由已知得![]()
![]()
∴
方程:
(4分)
(2)由題意可設直線
的方程為:
![]()
聯立
消去
并整理,得:![]()
則△
,
此時設
、
∴![]()
于是
(7分)
又直線
、
、
的斜率依次成等比數列,
∴
![]()
由
得:
.又由△
得:![]()
顯然
(否則:
,則
中至少有一個為0,直線
、
中至少有一個斜率不存在,矛盾!) (10分)
設原點
到直線
的距離為
,則![]()
![]()
故由
得取值范圍可得△
面積的取值范圍為
(13分)
考點:本題主要考查橢圓標準方程,直線與橢圓的位置關系。
點評:中檔題,曲線關系問題,往往通過聯立方程組,得到一元二次方程,運用韋達定理。本題求橢圓標準方程時,主要運用了橢圓的定義及幾何性質。(2)作為研究點到直線的距離最值問題,利用了函數思想。
科目:高中數學 來源: 題型:解答題
橢圓
的離心率為
,兩焦點分別為
,點
是橢圓C上一點,
的周長為16,設線段MO(O為坐標原點)與圓
交于點N,且線段MN長度的最小值為
.
(1)求橢圓C以及圓O的方程;
(2)當點
在橢圓C上運動時,判斷直線
與圓O的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知A(
,
),B(
,
)是函數
的圖象上的任意兩點(可以重合),點M在直線
上,且
.
(1)求
+
的值及
+
的值
(2)已知
,當
時,![]()
+
+
+
,求
;
(3)在(2)的條件下,設
=
,
為數列{
}的前
項和,若存在正整數
、
,
使得不等式
成立,求
和
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,線段
的兩個端點
、
分別分別在
軸、
軸上滑動,
,點
是
上一點,且
,點
隨線段
的運動而變化.![]()
(1)求點
的軌跡方程;
(2)設
為點
的軌跡的左焦點,
為右焦點,過
的直線交
的軌跡于
兩點,求
的最大值,并求此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓C:
的兩個焦點為F1、F2,點B1為其短軸的一個端點,滿足
,
。![]()
(1)求橢圓C的方程;
(2)過點M
做兩條互相垂直的直線l1、l2設l1與橢圓交于點A、B,l2與橢圓交于點C、D,求的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,F1,F2是離心率為
的橢圓
C:
(a>b>0)的左、右焦點,直線
:x=-
將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中點M在直線l上,線段AB的中垂線與C交于P,Q兩點.![]()
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點M,使以PQ為直徑的圓經過點F2,若存在,求出M點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
雙曲線
與橢圓
有相同的焦點
,且該雙曲線
的漸近線方程為
.
(1)求雙曲線的標準方程;
(2) 過該雙曲線的右焦點
作斜率不為零的直線與此雙曲線的左,右兩支分別交于點
、
,
設
,當
軸上的點
滿足
時,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題共14分)
已知橢圓C:
,左焦點
,且離心率![]()
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線
與橢圓C交于不同的兩點
(
不是左、右頂點),且以
為直徑的圓經過橢圓C的右頂點A. 求證:直線
過定點,并求出定點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com