中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
2kπ-
π
4
≤α≤2kπ+
π
4
(k∈Z)
時,化簡:
1-2sinα•cosα
+
1+2sinα•cosα
分析:原式被開方數利用同角三角函數間的基本關系及完全平方公式變形,再利用二次根式的性質化簡即可得到結果.
解答:解:∵2kπ-
π
4
≤α≤2kπ+
π
4
(k∈Z),
∴cosα>sinα,即cosα-sinα>0,2kπ≤α+
π
4
≤2kπ+
π
2
(k∈Z),
∴cosα+sinα=
2
sin(α+
π
4
)∈[0,
2
],
則原式=
sin2α-2sinαcosα+cos2α
+
sin2α+2sinαcosα+cos2α

=
(cosα-sinα)2
+
(cosα+sinα)2

=|cosα-sinα|+|cosα+sinα|
=cosα-sinα+cosα+sinα
=2cosα.
點評:此題考查了同角三角函數間基本關系的運用,熟練掌握基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對任意實數a,b,函數F(a,b)=
1
2
(a+b-|a-b|)
.如果函數f(x)=sinx,g(x)=cosx,那么對于函數G(x)=F(f(x),g(x)).對于下列五種說法:
(1)函數G(x)的值域是[-
2
,2]

(2)當且僅當2kπ+
π
2
<x<2(k+1)π(k∈Z)
時,G(x)<0;
(3)當且僅當x=2kπ+
π
2
(k∈Z)
時,該函數取最大值1;
(4)函數G(x)圖象在[
π
4
4
]
上相鄰兩個最高點的距離是相鄰兩個最低點的距離的4倍;
(5)對任意實數x有G(
4
-x)=G(
4
+x)
恒成立.
其中正確結論的序號是
(2)(4)(5)
(2)(4)(5)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•青浦區一模)定義函數f(x)=
sinx,sinx≥cosx
cosx,sinx<cosx

給出下列四個命題:
(1)該函數的值域為[-1,1];
(2)當且僅當x=2kπ+
π
2
(k∈Z)
時,該函數取得最大值;
(3)該函數是以π為最小正周期的周期函數;
(4)當且僅當2kπ+π<x<2kπ+
2
(k∈Z)
時,f(x)<0.
上述命題中正確的個數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

定義函數f(x)=
2cosx,(sinx<cosx)
2sinx (sinx≥cosx)
,給出下列四個命題:①該函數的值域是[-2,2];②該函數是以π為最小正周期的周期函數;③當且僅當x=2kπ-
π
2
(k∈Z)
時該函數取得最大值2;④當且僅當2kπ-π<x<2kπ-
π
2
(k∈Z)
時,f(x)<0.上述命題中,錯誤命題的個數是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

當曲線y=1+
4-x2
與直線kx-y-2k+4=0有兩個相異的交點時,實數k的取值范圍是(  )

查看答案和解析>>

同步練習冊答案