已知橢圓
經(jīng)過(guò)點(diǎn)
.
(1)求橢圓
的方程及其離心率;
(2)過(guò)橢圓右焦點(diǎn)
的直線(不經(jīng)過(guò)點(diǎn)
)與橢圓交于
兩點(diǎn),當(dāng)
的平分線為
時(shí),求直線
的斜率
.
(1)
,
;(2)
.
解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程以及幾何性質(zhì)、直線與橢圓相交問(wèn)題等基礎(chǔ)知識(shí),考查學(xué)生的數(shù)形結(jié)合思想、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),橢圓過(guò)點(diǎn)P,說(shuō)明點(diǎn)P在橢圓上,符合解析式,即可求出
,從而得到橢圓的標(biāo)準(zhǔn)方程,通過(guò)橢圓的標(biāo)準(zhǔn)方程得到
,
,
,從而得到離心率;第二問(wèn),由第一問(wèn)得到橢圓右焦點(diǎn)F的坐標(biāo),由P、F點(diǎn)坐標(biāo)可知
軸,由題意得
,令直線AB的方程與橢圓方程聯(lián)立,得到A、B坐標(biāo),結(jié)合P點(diǎn)坐標(biāo),得出
和
代入到
中,解出直線AB的斜率k的值.
(1)把點(diǎn)
代入
,可得
.
故橢圓的方程為![]()
,橢圓的離心率為
. ……4分
(2)由(1)知:
.
當(dāng)
的平分線為
時(shí),由
和
知:
軸.
記![]()
的斜率分別為
.所以,![]()
的斜率滿足
……6分
設(shè)直線
方程為
,代入橢圓方程
并整理可得,
.
設(shè)
,則![]()
又
,則
,
.……………………8分
所以![]()
=![]()
…………11分
即
.
. ……………13分
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程以及幾何性質(zhì)、直線與橢圓相交問(wèn)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的兩焦點(diǎn)分別為
,長(zhǎng)軸長(zhǎng)為6,
⑴求橢圓C的標(biāo)準(zhǔn)方程;
⑵已知過(guò)點(diǎn)(0,2)且斜率為1的直線交橢圓C于A 、B兩點(diǎn),求線段AB的長(zhǎng)度。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
如圖,已知雙曲線
的右焦點(diǎn)
,點(diǎn)
分別在
的兩條漸近線上,
軸,
∥
(
為坐標(biāo)原點(diǎn)).![]()
(1)求雙曲線
的方程;
(2)過(guò)
上一點(diǎn)
的直線
與直線
相交于點(diǎn)
,與直線
相交于點(diǎn)
,證明點(diǎn)
在
上移動(dòng)時(shí),
恒為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓
的右焦點(diǎn)為
,點(diǎn)
是橢圓上任意一點(diǎn),圓
是以
為直徑的圓.
(1)若圓
過(guò)原點(diǎn)
,求圓
的方程;
(2)寫(xiě)出一個(gè)定圓的方程,使得無(wú)論點(diǎn)
在橢圓的什么位置,該定圓總與圓
相切,請(qǐng)寫(xiě)出你的探究過(guò)程. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的左右頂點(diǎn)分別為
,離心率
.
(1)求橢圓的方程;
(2)若點(diǎn)
為曲線
:
上任一點(diǎn)(
點(diǎn)不同于
),直線
與直線
交于點(diǎn)
,
為線段
的中點(diǎn),試判斷直線
與曲線
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線
的兩個(gè)焦點(diǎn)為
、
點(diǎn)
在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為
求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C1和拋物線C2有公共焦點(diǎn)F(1,0),C1的中心和C2的頂點(diǎn)都在坐標(biāo)原點(diǎn),過(guò)點(diǎn)M(4,0)的直線l與拋物線C2分別相交于A ,B兩點(diǎn).
(1)如圖所示,若
,求直線l的方程;
(2)若坐標(biāo)原點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn)P在拋物線C2上,直線l與橢圓C1有公共點(diǎn),求橢圓C1的長(zhǎng)軸長(zhǎng)的最小值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓
的一個(gè)焦點(diǎn)為
,且離心率為
.
(1)求橢圓方程;
(2)斜率為
的直線
過(guò)點(diǎn)
,且與橢圓交于
兩點(diǎn),
為直線
上的一點(diǎn),若△
為等邊三角形,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系xOy中,已知圓心在第二象限、半徑為2
的圓C與直線y=x相切于坐標(biāo)原點(diǎn)O,橢圓
+
=1與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程.
(2)試探究圓C上是否存在異于原點(diǎn)的點(diǎn)Q,使Q到橢圓的右焦點(diǎn)F的距離等于線段OF的長(zhǎng),若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com