中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知數列an滿足遞推關系式:2an+1=1-an2(n≥1,n∈N),且0<a1<1.
(1)求a3的取值范圍;
(2)用數學歸納法證明:數學公式(n≥3,n∈N);
(3)若數學公式,求證:數學公式(n≥3,n∈N).

解:(1)∵,且a1∈(0,1),由二次函數性質可知a2∈(0,).

(2)證明:①在(1)的過程中可知n=3時,
則-
于是當n=3時,成立.
②假設在n=k(k≥3)時,(*)成立,即
則當n=k+1時,=
其中0<
于是
從而n=k+1時(*)式得證.
綜合①②可知:n≥3,n∈{N}時

(3)由變形為:
而由(n≥3,n∈N)
可知:在n≥3上恒成立,
于是
又∵,∴
從而原不等式(n≥3,n∈N)得證.(14分)
分析:(1)由題設知,且a1∈(0,1),由二次函數性質可知a2∈(0,).由此能求出a3的取值范圍;(2)用數學歸納法進行證明,證明過程中要注意合理地進行等價轉化.
(3)由變形為:,由此入手能夠得到證明.
點評:本題考查數列的性質和應用,解題時要認真審題,挖掘題設中的隱含條件,注意數學歸納法的解題過程.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列an滿足遞推關系式:2an+1=1-an2(n≥1,n∈N),且0<a1<1.
(1)求a3的取值范圍;
(2)用數學歸納法證明:|an-(
2
-1)|<
1
2n
(n≥3,n∈N);
(3)若bn=
1
an
,求證:|bn-(
2
+1)|<
12
2n
(n≥3,n∈N).

查看答案和解析>>

科目:高中數學 來源:武漢模擬 題型:解答題

已知數列an滿足遞推關系式:2an+1=1-an2(n≥1,n∈N),且0<a1<1.
(1)求a3的取值范圍;
(2)用數學歸納法證明:|an-(
2
-1)|<
1
2n
(n≥3,n∈N);
(3)若bn=
1
an
,求證:|bn-(
2
+1)|<
12
2n
(n≥3,n∈N).

查看答案和解析>>

科目:高中數學 來源:2009年湖北省武漢市高三二月調考數學試卷(文理合卷)(解析版) 題型:解答題

已知數列an滿足遞推關系式:2an+1=1-an2(n≥1,n∈N),且0<a1<1.
(1)求a3的取值范圍;
(2)用數學歸納法證明:(n≥3,n∈N);
(3)若,求證:(n≥3,n∈N).

查看答案和解析>>

科目:高中數學 來源:2009年北京市宣武區高考數學二模試卷(理科)(解析版) 題型:解答題

已知數列an滿足遞推關系式:2an+1=1-an2(n≥1,n∈N),且0<a1<1.
(1)求a3的取值范圍;
(2)用數學歸納法證明:(n≥3,n∈N);
(3)若,求證:(n≥3,n∈N).

查看答案和解析>>

同步練習冊答案