已知函數(shù)![]()
是偶函數(shù).
(1)求實數(shù)
的值;
(2)設函數(shù)
,若函數(shù)
與
的圖象有且只有一個公共點,求實數(shù)
的取值范圍.
(1)
,(2)
.
解析試題分析:(1)因為函數(shù)![]()
是偶函數(shù),所以有等量關系
,本題難點在化簡對數(shù)式,由
易得
,關鍵會化簡
,(2)本題第一個難點是化簡方程![]()
,即
,這里主要會化簡
從而再利用對數(shù)性質(zhì)運算得:
;第二個難點是“方程![]()
只有一個根”轉化為“二次方程只有一個正根”,這需明確指數(shù)函數(shù)的范圍,即
;第三個難點是分類討論二次方程只有一個正根的情形的等價條件.主要是兩個不等根的情況討論,需結合運用韋達定理.
試題解析:解:(1)由題意知:任意
有
,
即
恒成立.
∴
恒成立,化簡得
對
恒成立,∴
. 5分
(2)∵函數(shù)
與
的圖象有且只有一個公共點,
∴方程
有且只有一個實根,
化簡得:方程
有且只有一個實根,
令
,則方程
有且只有一個正根. 7分
①當
時,
不合題意; 8分
②當
時,
(ⅰ)若
,則
.
若
,則
不合題意;若
,則
合題意; 10分
(ⅱ)若
即
時,
由題意,方程有一個正根與一個負根,即
,解得
,∴
. 12分
綜上所述,實數(shù)
的取值范圍是
. 13分
考點:偶函數(shù)性質(zhì)應用,二次方程根的個數(shù).
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
,
.
(1)若
,判斷函數(shù)
的奇偶性,并加以證明;
(2)若函數(shù)
在
上是增函數(shù),求實數(shù)
的取值范圍;
(3)若存在實數(shù)
使得關于
的方程
有三個不相等的實數(shù)根,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知實數(shù)
,函數(shù)
.
(1)當
時,求
的最小值;
(2)當
時,判斷
的單調(diào)性,并說明理由;
(3)求實數(shù)
的范圍,使得對于區(qū)間
上的任意三個實數(shù)
,都存在以
為邊長的三角形.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com