中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=ax3-2bx2+cx+4d,(a,b,c,d∈R)的圖象關于原點對稱,且x=1時,f(x)取極小值-
1
3

(Ⅰ)求a,b,c,d的值;
(Ⅱ)當x∈[-1,1]時,圖象上是否存在兩點,使兩點處的切線互相垂直?試證明你的結論;
(Ⅲ)若x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤
4
3
分析:(1)根據奇偶性判斷bd的值,再有在1處的極值求出a.
(2)用假設法證明,假設存在兩點,在得出結果與假設矛盾.
(3)函數在1和-1處取代極值,判斷其為最值,根據兩最值之差最大,證明問題.
解答:(I)解:因為圖象關于原點對稱,所以f(x)為奇函數,所以b=0,d=0
所以f(x)=ax3+cx,因此f'(x)=3ax2+c
由題意得
f(1)=a+c=-
1
3
f′(1)=3a+c=0

解得a=
1
6
,c=-
1
2

(II)不存在.
證明:假設存在x1,x2,則f'(x1)•f'(x2)=-1
所以(x12-1)(x22-1)=-4
因為x1,x2∈[-1,1]所以x12-1,x22-1∈[-1,0]
因此(x12-1)(x22-1)≠-4
所以不存在.
(III)證明:f′(x)=
1
2
x2-
1
2

f′(x)=
1
2
x2-
1
2
=0得x=±1fmin(x)=f(1)=-
1
3
fmax(x)=f(-1)=
1
3

所以|f(x1)-f(x2)|≤fmax(x)-fmin(x)=f(-1)-f(1)=
2
3
4
3
點評:該題考查函數奇偶性對應的奇數次項系數的值以及偶數次項系數的值,考查反正發的使用,考查兩數之間最值之差最大,為中等題,
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個數中任取一個數,b是從2,3,4,5四個數中任取一個數,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=ax+b的圖象經過點(1,7),又其反函數的圖象經過點(4,0),求函數的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•楊浦區一模)(文)設函數f(x)=ax+1-2(a>1)的反函數為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網設函數f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結果,則f(x)的展開式中常數項是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習冊答案