中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知某海濱浴場的海浪高度(單位:米)與時間 (單位:時)的函數關系記作,下表是某日各時的浪高數據:

/時

0

3

6

9

12

15

18

21

24

/米

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

經長期觀測,函數可近似地看成是函數

(1)根據以上數據,求出函數的最小正周期T及函數表達 式(其中);

(2)根據規定,當海浪高度不低于0.75米時,才對沖浪愛好者開放,請根據以上結論,判斷一天內從上午7時至晚上19時之間,該浴場有多少時間可向沖浪愛好者開放?

(1)(2)8


解析:

(1)                

   (2)                

       

        即               

        由,得.

        該浴場有小時可向沖浪愛好者開放.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知某海濱浴場的海浪高度y(m)是時間t(0≤t≤24,單位:h)的函數,記作y=f(t),下表是某日各時的浪高數據:
t/時 0 3 6 9 12 15 18 21 24
y/米 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5
經長期觀測,y=f(t)的曲線可近似地看成是函數y=Acosωt+b.
(1)求函數y=Acosωt+b的最小正周期T,振幅A及函數表達式.
(2)依據規定:當海浪高度高于1m時才對沖浪愛好者開放,請依據(1)的結論,一天內的上午8:00時至晚上20:00時之間,有多少時間可供沖浪者進行運動.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知某海濱浴場的海浪高度y(單位:米)與時間 t(0≤t≤24)(單位:時)的函數關系記作y=f(t),下表是某日各時的浪高數據:
t/時 0 3 6 9 12 15 18 21 24
y/米 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5
經長期觀測,函數y=f(t)可近似地看成是函數y=Acosωt+b.
(1)根據以上數據,求出函數y=Acosωt+b的最小正周期T及函數表達 式(其中A>0,ω>0);
(2)根據規定,當海浪高度不低于0.75米時,才對沖浪愛好者開放,請根據以上結論,判斷一天內從上午7時至晚上19時之間,該浴場有多少時間可向沖浪愛好者開放?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知某海濱浴場的海浪高度y(m)是時間t(0≤t≤24,單位:小時)的函數,記作y=f(t).表是某日各時的浪高數據:
t 0 3 6 9 12 15 18 21 24
y 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5
經長期觀察,y=f(t)的曲線可近似地看成是函數y=Asin(ωt+
π
2
)+b的圖象.
(1)根據以上數據,求出函數y=Asin(ωt+
π
2
)+b的最小正周期T,振幅A及函數表達式;
(2)依據規定,當海浪高度高于1m時才對沖浪愛好者開放,請依據(1)的結論,判斷一天內的上午8:00到晚上20:00;之間,有多少時間可供沖浪者進行活動?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知某海濱浴場的海浪高度y(單位:米)與時間t(0≤t≤24)(單位:時)的函數關系記作y=f(t),下表是某日各時的浪高數據:

t(時)

0

3

6

9

12

15

18

21

24

y(米)

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

經長期觀測,函數y=f(t)可近似地看成是函數

(1)根據以上數據,求出函數的最小正周期T及函數表達式(其中A>0,ω>0);

(2)根據規定,當海浪高度不低于0.75米時,才對沖浪愛好者開放,請根據以上結論,判斷一天內從上午7時至晚上19時之間,該浴場有多少時間可向沖浪愛好者開放

查看答案和解析>>

同步練習冊答案