中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為a元.
(1)將全程運輸成本y(元)表示為速度v()的函數,并指出這個函數的定義域;
(2)為了使全程運輸成本最小,貨車應以多大的速度行駛?

(1), (2)當(元)時,;當(元)時,.

解析試題分析:(1)解決應用題問題首先要解決閱讀問題,具體說就是要會用數學式子正確表示數量關系,本題中全程運輸成本等于每小時運輸成本與全程所化時間的乘積,有學生錯誤將每小時運輸成本理解為全程運輸成本,其次要注意定義域的確定,不僅要從保證數學式子的有意義考慮,而且更要結合實際意義考慮,如本題速度為正數,(2)研究對應解析式的最值問題,一般從不等式或函數考慮,從不等式考慮時,要會將解析式轉為“和”與“積”的關系,注意等于號是否取到,而從函數考慮時,經常結合導數進行研究.本題不管從不等式考慮還是從函數考慮,都需進行討論,討論的原因都是因為定義域.
試題解析:(1)可變成本為,固定成本為元,所用時間為.
,即          4分
定義域為                  5分
(2)
      7分
因為
所以當的減函數,
時,最小.         9分
所以當,即時,











極小值

時,最小.   13分
(答)以上說明,當(元)時,貨車以的速度行駛,全程運輸成本最小;當(元)時,貨車以的速度行駛,全程運輸成本最小.   14分
考點:函數解析式,利用導數求函數最值.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(2013·重慶卷)設f(x)=a(x-5)2+6ln x,其中a∈R,曲線yf(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數f(x)的單調區間與極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(1)當時,求函數處的切線方程;
(2)若函數在區間(1,2)上不是單調函數,試求的取值范圍;
(3)已知,如果存在,使得函數處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若上是增函數,求實數a的取值范圍;
(Ⅱ)證明:當a≥1時,證明不等式≤x+1對x∈R恒成立;
(Ⅲ)對于在(0,1)中的任一個常數a,試探究是否存在x0>0,使得>x0+1成立?如果存在,請求出符合條件的一個x0;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若,則滿足什么條件時,曲線處總有相同的切線?
(2)當時,求函數的單調減區間;
(3)當時,若對任意的恒成立,求的取值的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中是自然對數的底數,.
(Ⅰ)求函數的單調區間;
(Ⅱ)當時,試確定函數的零點個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中,且.
⑴當時,求函數的最大值;
⑵求函數的單調區間;
⑶設函數若對任意給定的非零實數,存在非零實數),使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若曲線在x=l和x=3處的切線互相平行,求a的值及函數的單調區間;
(2)設,若對任意,均存在,使得,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中a>0.
(Ⅰ)求函數的單調區間;
(Ⅱ)若直線是曲線的切線,求實數a的值;
(Ⅲ)設,求在區間上的最大值(其中e為自然對的底數)。

查看答案和解析>>

同步練習冊答案