![]()
圖2-4-16
(1)試判斷△DCT的形狀.
(2)△DCT有無(wú)可能成為正三角形?若無(wú)可能,說(shuō)明為什么;若有可能,求出這時(shí)PB與PA應(yīng)滿足的條件.
思路分析:要判斷△DCT的形狀,先考慮其內(nèi)角的關(guān)系,注意到CT、CB為切線,則連結(jié)BT,可用弦切角定理推論得∠ATB =∠BTD =90°,從而可判斷△DCT的形狀.
![]()
解:(1)連結(jié)BT,∵CB、CT為⊙O的切線,?
∴∠CTB =CBT.?
又AB為⊙O的直徑,∴∠ATB =∠DTB =90°.?
∴∠DTC =90°-∠CTB,
∠D =90°-∠CBT.?
∴∠DTC =∠D,即CD =CT.?
∴△DCT為等腰三角形.?
(2)若△DCT為正三角形,則∠D =60°,?
由(1)知∠CBT=90°-∠D =30°,?
而CB切⊙O于B,?
∴∠A =∠CBT=30°.?
∴在Rt△ATB中,
=sin30°=
,?
且∠ABT=90°-30°=60°,∠ABT =∠CTB +∠P.?
而∠CTB =∠CBT =30°,?
∴∠P =30°.∴∠P =∠CTB.?
∴PB = TB.∴
=
,?
即當(dāng)PB∶PA=1∶3時(shí),△DCT為正三角形.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:044
![]()
圖1-3-16
求證:(1)GH·CE =DF·BC;?
(2)DC2=DF·DE;?
(3)CH·CD =GH·DE;?
(4)GB∶BA =CH∶BH;?
(5)CH·EF =BA·DF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
![]()
(1)求第五小組的頻率,并補(bǔ)全頻率分布直方圖;
(2)求競(jìng)賽成績(jī)大于80.5分且小于90.5分的學(xué)生數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
![]()
圖1-3-16
求證:(1)GH·CE =DF·BC;
(2)DC2=DF·DE;
(3)CH·CD =GH·DE;
(4)GB∶BA =CH∶BH;
(5)CH·EF =BA·DF.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com