已知函數(shù)
.
(Ⅰ)求
的最小值;
(Ⅱ)若對(duì)所有
都有
,求實(shí)數(shù)
的取值范圍.
(1)當(dāng)
時(shí),
取得最小值
. (2)
的取值范圍是
.
解析試題分析:(1)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b5/7/b0f2o1.png" style="vertical-align:middle;" />, 1分
的導(dǎo)數(shù)
. 2分
令
,解得
;令
,解得
.
從而
在
單調(diào)遞減,在
單調(diào)遞增. 4分
所以,當(dāng)
時(shí),
取得最小值
. 6分
(2)依題意,得
在
上恒成立,
即不等式
對(duì)于
恒成立 .
令
, 則
. 8分
當(dāng)
時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/84/3/bv68k.png" style="vertical-align:middle;" />,
故
是
上的增函數(shù), 所以
的最小值是
, 10分
所以
的取值范圍是
. 12分
考點(diǎn):應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,不等式恒成立問題。
點(diǎn)評(píng):中檔題,本題屬于導(dǎo)數(shù)應(yīng)用中的常見問題,通過研究函數(shù)的單調(diào)性,明確最值情況。涉及不等式恒成立問題,往往通過構(gòu)造函數(shù),研究函數(shù)的最值,得到確定參數(shù)(范圍)的目的。對(duì)數(shù)函數(shù)要注意其真數(shù)大于0.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)![]()
為奇函數(shù),其圖象在點(diǎn)
處的切線與直線
垂直,導(dǎo)函數(shù)
的最小值為
.
(1)求
,
,
的值;
(2)求函數(shù)
的單調(diào)遞增區(qū)間,并求函數(shù)
在
上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(其中
).
(1)求
的單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間
上為增函數(shù),求
的取值范圍;
(3)設(shè)函數(shù)
,當(dāng)
時(shí),若存在
,對(duì)任意的
,總有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在x=
與x =l時(shí)都取得極值
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間
(2)若對(duì)x∈(-1,2),不等式f(x)<c2恒成立,求c的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)若曲線
在
和
處的切線互相平行,求
的值及函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,若對(duì)任意
,均存在
,使得
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)求曲線
在點(diǎn)
處的切線方程;
(2)求
的單調(diào)區(qū)間.
(3)設(shè)
,如果過點(diǎn)
可作曲線
的三條切線,證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)![]()
。
(1)求函數(shù)
的最小值;
(2)設(shè)![]()
,討論函數(shù)
的單調(diào)性;
(3)斜率為
的直線與曲線
交于
,![]()
兩點(diǎn),求證:
。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com