中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知球O的半徑為r,A、B、C三點都在球面上,且每兩點間的球面距離為,則球心O到平面ABC的距離為______________________.

解析:可求得∠AOB=∠AOC=∠BOC=,再利用等體積法可求得.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知球O的半徑為R,一平面截球所得的截面面積為4π,球心到該截面的距離為
5
,則球O的體積等于
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知球O的半徑為R,它的表面上有兩點A,B,且∠AOB=
π6
,那么A,B兩點間的球面距離是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知球O的半徑為R,圓柱內接于球,當內接圓柱的體積最大時,高等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知球O的半徑為R,A、B、C為球面上的三點,若任意兩點的球面距離均為
πR
3
,則球O的體積與三棱錐O-ABC的體積之比為(  )

查看答案和解析>>

同步練習冊答案