某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)
為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過(guò)點(diǎn)
的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為
米,圓心角為
(弧度).![]()
(1)求
關(guān)于
的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為
,求
關(guān)于
的函數(shù)關(guān)系式,并求出
為何值時(shí),
取得最大值?
(1)
;(2)1.
解析試題分析:(1)將扇環(huán)面的兩段弧長(zhǎng)和直線段長(zhǎng)分別用
與
表示后,利用其和為30列式,再解出
即可;(2)將花壇的面積和裝飾總費(fèi)用分別用
與
表示,再利用第(1)問(wèn)的結(jié)果消去
,從而可得到
關(guān)于
函數(shù),然后可利用導(dǎo)數(shù)或基本等式求其最小值,并確定
取最小值時(shí)
的值.
試題解析:(1)由弧長(zhǎng)計(jì)算及扇環(huán)面的周長(zhǎng)為30米,得
,所以
, 4分
(2) 花壇的面積為
. 7分
裝飾總費(fèi)用為
, 9分
所以花壇的面積與裝飾總費(fèi)用的比
, 11分
令
,則
,當(dāng)且僅當(dāng)t=18時(shí)取等號(hào),此時(shí)
.
答:當(dāng)x=1時(shí),花壇的面積與裝飾總費(fèi)用的比最大. 14分
(注:對(duì)
也可以通過(guò)求導(dǎo),研究單調(diào)性求最值,同樣給分)
考點(diǎn):函數(shù)在實(shí)際問(wèn)題中的應(yīng)用,基本不等式的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某化工企業(yè)2012年底投入100萬(wàn)元購(gòu)入一套污水處理設(shè)備.該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬(wàn)元,此外每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬(wàn)元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬(wàn)元.設(shè)該企業(yè)使用該設(shè)備x年的年平均污水處理費(fèi)用為y(單元:萬(wàn)元).
(1)用x表示y;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備.求該企業(yè)幾年后需要重新更換新的污水處理設(shè)備.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)
定義在區(qū)間
都有
且
不恒為零.
(1)求
的值;
(2)若
且
求證:
;
(3)若
求證:
在
上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
兩城相距
,在兩地之間距
城
處
地建一核電站給
兩城供電.為保證城市安全,核電站距城市距離不得少于
.已知供電費(fèi)用(元)與供電距離(
)的平方和供電量(億度)之積成正比,比例系數(shù)
,若
城供電量為
億度/月,
城為
億度/月.
(Ⅰ)把月供電總費(fèi)用
表示成
的函數(shù),并求定義域;
(Ⅱ)核電站建在距
城多遠(yuǎn),才能使供電費(fèi)用最小,最小費(fèi)用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)判斷函數(shù)
在
的單調(diào)性并用定義證明;
(2)令
,求
在區(qū)間
的最大值的表達(dá)式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
且
,函數(shù)
,
,記![]()
(1)求函數(shù)
的定義域及其零點(diǎn);
(2)若關(guān)于
的方程
在區(qū)間
內(nèi)僅有一解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)若函數(shù)
有兩個(gè)零點(diǎn),求
的取值范圍;
(2)若函數(shù)
在區(qū)間
與
上各有一個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量
,
,其中
.函數(shù)
在區(qū)間
上有最大值為4,設(shè)
.
(1)求實(shí)數(shù)
的值;
(2)若不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某工廠某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)
千件,需另投入成本為
,當(dāng)年產(chǎn)量不足80千件時(shí),
(萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí),
(萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫(xiě)出年利潤(rùn)
(萬(wàn)元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com