2013年,首都北京經(jīng)歷了59年來(lái)霧霾天氣最多的一個(gè)月。經(jīng)氣象局統(tǒng)計(jì),北京市從1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣。《環(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》將空氣質(zhì)量指數(shù)分為六級(jí):其中,中度污染(四級(jí)),指數(shù)為151—200;重度污染(五級(jí)),指數(shù)為201—300;嚴(yán)重污染(六級(jí)),指數(shù)大于300. 下面表1是該觀測(cè)點(diǎn)記錄的4天里,AQI指數(shù)
與當(dāng)天的空氣水平可見度
(千米)的情況,表2是某氣象觀測(cè)點(diǎn)記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計(jì)結(jié)果,
表1:AQI指數(shù)
與當(dāng)天的空氣水平可見度
(千米)情況
| AQI指數(shù) | ||||
| 空氣可見度 |
| AQI指數(shù) | |||||
| 頻數(shù) | 3 | 6 | 12 | 6 | 3 |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的房頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元,該建筑物每年的能源消耗費(fèi)用為C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=
(0
x
10),若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某工廠生產(chǎn)一種產(chǎn)品的原材料費(fèi)為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機(jī)器保養(yǎng)等費(fèi)用為每件0.05x元,又該廠職工工資固定支出12500元。
(1)把每件產(chǎn)品的成本費(fèi)P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費(fèi);
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過3000件,且產(chǎn)品能全部銷售,根據(jù)市場(chǎng)調(diào)查:每件產(chǎn)品的銷售價(jià)Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:
,試問生產(chǎn)多少件產(chǎn)品,總利潤(rùn)最高?(總利潤(rùn)=總銷售額-總的成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
是偶函數(shù),
,
(1)求
的值;(2)當(dāng)
時(shí),求
的解集;
(3)若函數(shù)
的圖象總在
的圖象上方,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)
,滿足
,且方程
有兩個(gè)相等的實(shí)根.
(1)求函數(shù)
的解析式;
(2)當(dāng)![]()
時(shí),求函數(shù)
的最小值
的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
,
是定義域?yàn)镽上的奇函數(shù).
(1)求
的值,并證明當(dāng)
時(shí),函數(shù)
是R上的增函數(shù);
(2)已知
,函數(shù)
,
,求
的值域;
(3)若
,試問是否存在正整數(shù)
,使得
對(duì)
恒成立?若存在,請(qǐng)求出所有的正整數(shù)
;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一邊長(zhǎng)為
的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為
的小正方形,然后做成一個(gè)無(wú)蓋方盒。
(1)試把方盒的容積
表示為
的函數(shù);
(2)
多大時(shí),方盒的容積
最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
鑫隆房地產(chǎn)公司用2160萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少10層、每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為
層,則每平方米的平均建筑費(fèi)用為
(單位:元).為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=
)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com