中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知關于x的函數f(x)=+bx2+cx+bc,其導函數為f+(x).令g(x)=∣f (x) ∣,記函數g(x)在區間[-1、1]上的最大值為M.

   (Ⅰ)如果函數f(x)在x=1處有極值-,試確定b、c的值:

  (Ⅱ)若∣b∣>1,證明對任意的c,都有M>2: w.w.w.k.s.5.u.c.o.m    

   (Ⅲ)若M≧K對任意的b、c恒成立,試求k的最大值。

(Ⅰ) (Ⅱ)略(Ⅲ)


解析:

本小題主要考察函數、函數的導數和不等式等基礎知識,考察綜合運用數學知識進行推理論證的能力和份額類討論的思想(滿分14分)

(I)解:,由處有極值

可得

解得

,則,此時沒有極值;

,則

變化時,的變化情況如下表:

1

0

+

0

極小值

極大值

時,有極大值,故即為所求。

(Ⅱ)證法1:

時,函數的對稱軸位于區間之外。

上的最值在兩端點處取得

應是中較大的一個

證法2(反證法):因為,所以函數的對稱軸位于區間之外,

上的最值在兩端點處取得。

應是中較大的一個

假設,則

 w.w.w.k.s.5.u.c.o.m    

將上述兩式相加得:

,導致矛盾,

(Ⅲ)解法1:

(1)當時,由(Ⅱ)可知

(2)當時,函數)的對稱軸位于區間內,w.w.w.k.s.5.u.c.o.m    

此時

①若

于是

②若,則

于是

綜上,對任意的都有

而當時,在區間上的最大值

對任意的恒成立的的最大值為

解法2:

(1)當時,由(Ⅱ)可知;w.w.w.k.s.5.u.c.o.m    

(2)當時,函數的對稱軸位于區間內,

此時

 w.w.w.k.s.5.u.c.o.m    

,即

下同解法1

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知關于x的函數f(x)=-
1
3
x3+bx2+cx+bc,其導函數為f′(x).令g(x)=|f′(x)|,記函數g(x)在區間[-1、1]上的最大值為M.
(Ⅰ)如果函數f(x)在x=1處有極值-
4
3
,試確定b、c的值:
(Ⅱ)若|b|>1,證明對任意的c,都有M>2
(Ⅲ)若M≧K對任意的b、c恒成立,試求k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知關于x的函數f(x)=-
1
3
x3
+bx2+cx+bc,如果函數f(x)在x=1處有極值-
4
3
,試確定b、c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知關于x的函數f(x)=x2+2ax+b(其中a,b∈R)
(Ⅰ)求函數|f(x)|的單調區間;
(Ⅱ)令t=a2-b.若存在實數m,使得|f(m)|≤
1
4
與|f(m+1)|≤
1
4
同時成立,求t的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知關于x的函數f(x)=mx-1,(其中m>1),設a>b>c>1,則
f(a)
a
f(b)
b
f(c)
c
的大小關系是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知關于x的函數f(x)=(-2a+3b-5)x+8a-5b-1.如果x∈[-1,1]時,其圖象恒在x軸的上方,則
b
a
的取值范圍是
(-∞,
3
2
)∪(3,+∞)
(-∞,
3
2
)∪(3,+∞)

查看答案和解析>>

同步練習冊答案