正方形
與梯形
所在平面互相垂直,
,
,點(diǎn)
在線段
上且不與
重合。![]()
(Ⅰ)當(dāng)點(diǎn)M是EC中點(diǎn)時(shí),求證:BM//平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為
時(shí),求三棱錐
的體積.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
中,
,
,
為
的中點(diǎn),
分別在線段
上的動(dòng)點(diǎn),且
,
交
于
,把
沿
折起,如下圖所示,![]()
(Ⅰ)求證:
平面
;
(Ⅱ)當(dāng)二面角
為直二面角時(shí),是否存在點(diǎn)
,使得直線
與平面
所成的角為
,若存在求
的長(zhǎng),若不存在說(shuō)明理由。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=
,AD=1.![]()
(I)求證:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐
中,底面
為直角梯形,
∥
,
,平面
⊥底面
,
為
的中點(diǎn),
是棱
上的點(diǎn),
,
,
.![]()
(Ⅰ)求證:平面
⊥平面
;
(Ⅱ)若
為棱
的中點(diǎn),求異面直線
與
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,
、
為圓柱
的母線,
是底面圓
的直徑,
、
分別是
、
的中點(diǎn),
.![]()
(1)證明:
;
(2)證明:
;
(3)求四棱錐
與圓柱
的體積比.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com