中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知f(x)為R上的減函數,則滿足f(
1x2
)>f(1)
的實數x的取值范圍是
(-∞,-1)∪(1,+∞)
(-∞,-1)∪(1,+∞)
分析:依題意得,
1
x2
<1,解之即可.
解答:解:∵f(x)為R上的減函數,f(
1
x2
)>f(1)

1
x2
<1,
∴x>1或x<-1.
故答案為:(-∞,-1)∪(1,+∞).
點評:本題考查函數單調性的性質,由題意得到
1
x2
<1是關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)為R上的減函數,則滿足f(
1
x
)>f(1)
的實數x的取值范圍是(  )
A、(-∞,1)
B、(1,+∞)
C、(-∞,0)∪(0,1)
D、(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知 f(x)為R上的可導函數,且f(x)<f'(x)和f(x)>0對于x∈R恒成立,則有(  )
A、f(2)<e2-f(0),f(2010)>e2010-f(0)B、f(2)>e2-f(0),f(2010)>e2010-f(0)C、f(2)<e2-f(0),f(2010)<e2010-f(0)D、f(2)<e2-f(0),f(2010)<e2010-f(0)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為R上的偶函數,且當x≥0時,f(x)=x2-2x,則
(1)求f(x)在R上的解析式;
(2)寫出f(x)的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為R上的奇函數,且f(x+1)=-f(x),若存在實數a、b使得f(a+x)=f(b-x),則a、b應滿足關系
a+b=1+2k(k∈N*
a+b=1+2k(k∈N*

查看答案和解析>>

同步練習冊答案