解答:解:(1)當α=1時,
an+1=f(an)=,兩邊取倒數,得
-=1,----(2分)
故數列
{}是以
=2為首項,1為公差的等差數列,
=n+1,
an=,n∈N*.--------------(4分)
(2)證法1:由(1)知
an=,故對k=1,2,3…
akak+1ak+2==
[-]-------------(6分)
∴a
1a
2a
3+a
2a
3a
4+…+a
na
n+1a
n+2
=
[(-)+(-)+…+-]=
[-]=
.------------------------------(9分).
[證法2:①當n=1時,等式左邊=
=,
等式右邊=
=,左邊=右邊,等式成立;-------------------------(5分)
②假設當n=k(k≥1)時等式成立,
即
a1a2a3+a2a3a4+…+akak+1ak+2=,
則當n=k+1時
a1a2a3+a2a3a4+…+akak+1ak+2+ak+1ak+2ak+3=+=
| k(k+5)(k+4)+12 |
| 12(k+2)(k+3)(k+4) |
=| k3+9k2+20k+12 |
| 12(k+2)(k+3)(k+4) |
=
| k2(k+1)+4(k+1)(2k+3) |
| 12(k+2)(k+3)(k+4) |
=| (k+1)(k+2)(k+6) |
| 12(k+2)(k+3)(k+4) |
=| (k+1)[(k+1)+5] |
| 12[(k+1)+2][(k+1)+3] |
這就是說當n=k+1時,等式成立,----------------------------------------(8分)
綜①②知對于?n∈N*有:
a1a2a3+a2a3a4+…+anan+1an+2=.----(9分)]
(3)當α=2時,
an+1=f(an)=則
an+1-an=-an=an(1-an),-------------------(10分)
∵0<a
n<1,
∴
an+1-an=an(1-an)≤()2•--------------------------------(11分)=
•=
•≤•=
.--------------------(13分)
∵a
n=1-a
n與
an+1=不能同時成立,∴上式“=”不成立,
即對?n∈N
*,
an+1-an<.-----------------------------------------------------------(14分)
證法二:當α=2時,
an+1=f(an)=,
則
an+1-an=-an=----------------------------------------------------(10分)
又0<a
n<1,∴
=>1,
∴a
n+1>a
n,∴a
n∈[
,1),n∈N
*------------------------------------------------(11分)
令
g(x)=,x∈[,1),則
g′(x)=,--------------------------(12分)
當
x∈[,1),g′(x)<0,所以函數g(x)在
[,1)單調遞減,故當
x∈[,1),g(x)≤=<,所以命題得證------------------(14分)
所以命題得證-----------------------------------------(14分)