試題分析:(Ⅰ)函數

的圖像與

軸無交點,那么函數對應的方程的判別式

,解不等式即可;(Ⅱ)先判斷函數

在閉區間

的單調性,然后根據零點存在性定理,可知

,解方程組求得同時滿足兩個表達式的

的取值范圍;(Ⅲ)若對任意的

,總存在

,使

,只需函數

的值域為函數

值域的子集即可.先求出函數

在區間

上的值域是

,然后判斷函數

的值域.分

,

,

三種情況進行分類討論,當

時,函數

是一次函數,最值在兩個區間端點處取得,所以假設其值域是

,那么就有

成立,解相應的不等式組即可.
試題解析:(Ⅰ)若函數

的圖象與

軸無交點,則方程

的判別式

,
即

,解得

. 3分
(Ⅱ)

的對稱軸是

,所以

在

上是減函數,

在

上存在零點,則必有:

,即

,
解得:

,故實數

的取值范圍為

; 8分
(Ⅲ)若對任意的

,總存在

,使

,只需函數

的值域為函數

值域的子集.當

時,

的對稱軸是

,所以

的值域為

, 下面求

,

的值域,
①當

時,

,不合題意,舍;
②當

時,

的值域為

,只需要:

,解得

;
③當

時,

的值域為

,只需要:

,解得

;
綜上:實數

的取值范圍

或

. 14分