已知橢圓C1:
=1,橢圓C2以C1的短軸為長軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設直線l與橢圓C2相交于不同的兩點A、B,已知A點的坐標為(-2,0),點Q(0,y0)在線段AB的垂直平分線上,且
=4,求直線l的方程.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系xOy中,F是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內的任意一點,過M,F,O三點的圓的圓心為Q,點Q到拋物線C的準線的距離為
.
(1)求拋物線C的方程.
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
分別是橢圓
的左,右頂點,點
在橢圓
上,且直線
與直線
的斜率之積為
.![]()
(1)求橢圓
的標準方程;
(2)點
為橢圓
上除長軸端點外的任一點,直線
,
與橢圓的右準線分別交于點
,
.
①在
軸上是否存在一個定點
,使得
?若存在,求點
的坐標;若不存在,說明理由;
②已知常數
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線
的一條漸近線方程是
,它的一個焦點在拋物線
的準線上,點
是雙曲線
右支上相異兩點,且滿足![]()
為線段
的中點,直線
的斜率為![]()
(1)求雙曲線
的方程;
(2)用
表示點
的坐標;
(3)若
,
的中垂線交
軸于點
,直線
交
軸于點
,求
的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓C:
=1(a>b>0)的離心率e=
,右焦點到直線
=1的距離d=
,O為坐標原點.
(1)求橢圓C的方程;
(2)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點,證明,點O到直線AB的距離為定值,并求弦AB長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,動點
滿足:點
到定點
與到
軸的距離之差為
.記動點
的軌跡為曲線
.
(1)求曲線
的軌跡方程;
(2)過點
的直線交曲線
于
、
兩點,過點
和原點
的直線交直線
于點
,求證:直線
平行于
軸.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的左、右焦點分別為
、
,橢圓上的點
滿足
,且△
的面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設橢圓
的左、右頂點分別為
、
,過點
的動直線
與橢圓
相交于
、
兩點,直線
與直線
的交點為
,證明:點
總在直線
上.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com