一個(gè)多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖所示,M、N分別為A1B、B1C1的中點(diǎn).![]()
(1)求證:MN//平面ACC1A1;
(2)求證:MN^平面A1BC.
(1)見(jiàn)解析;(2)見(jiàn)解析
解析試題分析:先由三視圖還原幾何體的直觀圖中線段長(zhǎng)度,(1)利用直線與平面平行的判定定理,在平面內(nèi)找一直線AC1,由三角形中位線證明MN//AC1,用直線與平面平行的判定定理得到結(jié)論;(2)通過(guò)證明平面內(nèi)兩相交直線同時(shí)垂直MN,由直線與平面垂直的判定定理得證.
試題解析:證明:由意可得:這個(gè)幾何體是直三棱柱,
且AC^BC,AC=BC=CC1 -----2分![]()
(1)由直三棱柱的性質(zhì)可得:AA1^A1B1
四邊形ABCD為矩形,則M為AB1的中點(diǎn),N為B1C1
的中點(diǎn),在DAB1C中,由中位線性質(zhì)可得:
MN//AC1,又AC1Ì平面ACC1A1,MNË平面ACC1A1
\ MN//平面ACC1A1 6分
(2)因?yàn)椋篊C1^平面ABC,BCÌ平面ABC,\ CC1^ BC,
又BC^AC,ACÇCC1=C,所以,BC^平面ACC1A1,AC1Ì平面ACC1A1
\ BC^AC1,在正方形ACC1A1中,AC1^A1C,BCÇA1C=C,\ AC1^平面A1BC,
又AC1//MN,\MN^平面A1BC 10分
考點(diǎn):1.三視圖;2.直線與平面的平行、垂直的判定
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,正三棱柱ABC—A1B1C1的各棱長(zhǎng)都相等,M、E分別是
和AB1的中點(diǎn),點(diǎn)F在BC上且滿足BF∶FC=1∶3.![]()
(1)求證:BB1∥平面EFM;
(2)求四面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐
中,側(cè)棱
底面
,且底面
是邊長(zhǎng)為2的正方形,
,
與
相交于點(diǎn)
.![]()
(I)證明:
;
(II)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在三棱錐A—BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
,BD=CD=1,另一個(gè)側(cè)面ABC是正三角形.![]()
(1)當(dāng)正視圖方向與向量
的方向相同時(shí),畫(huà)出三棱錐A—BCD的三視圖;(要求標(biāo)出尺寸)
(2)求二面角B—AC—D的余弦值;
(3)在線段AC上是否存在一點(diǎn)E,使ED與平面BCD成30°角? 若存在,確定點(diǎn)E的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知三棱錐
中,
,
,
為
中點(diǎn),
為
中點(diǎn),且
為正三角形。![]()
(Ⅰ)求證:
//平面
;
(Ⅱ)求證:平面
⊥平面
;
(III)若
,
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖示,給出的是某幾何體的三視圖,其中正視圖與側(cè)視圖都是邊長(zhǎng)為2的正三角形,俯視圖為半徑等于1的圓.試求這個(gè)幾何體的體積與側(cè)面積.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某高速公路收費(fèi)站入口處的安全標(biāo)識(shí)墩如圖1所示。墩的上半部分是正四棱錐
,下半部分是長(zhǎng)方體
。圖2、圖3分別是該標(biāo)識(shí)墩的正(主)視圖和俯視圖。![]()
圖1 圖2 圖3
(1)請(qǐng)?jiān)谡晥D右側(cè)畫(huà)出該安全標(biāo)識(shí)墩的側(cè)(左)視圖;
(2)求該安全標(biāo)識(shí)墩的體積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面四邊形ABCD中,
ABC為正三角形,
ADC為等腰直角三角形,AD=DC=2,將
ABC沿AC折起,使點(diǎn)B至點(diǎn)P,且PD=2
,M為PA的中點(diǎn),N在線段PD上。![]()
(I)若PA
平面CMN,求證:AD//平面CMN;
(II)求直線PD與平面ACD所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分) 已知四棱錐
,
底面ABCD,其三視圖如下,若M是PD的中點(diǎn)![]()
⑴ 求證:PB//平面MAC;
⑵ 求直線PC與平面MAC所成角的正弦值。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com