中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

設曲線y=x2+x+2-lnx在x=1處的切線為l,數列{an}的首項a1=-m,(其中常數m為正奇數)且對任意n∈N+,點(n-1,an+1-an-a1)均在直線l上.

(1)求出{an}的通項公式;

(2)令bn=nan(n∈N+),當an≥a5恒成立時,求出n的取值范圍,使得bn+1>bn成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數fx)=x2-4,設曲線yfx)在點(xnfxn))處的切線與x軸的交點為(xn+1,0)(n),其中為正實數.  

 (Ⅰ)用表示xn+1

(Ⅱ)若a1=4,記an=lg,證明數列{}成等比數列,并求數列{xn}的通項公式;

(Ⅲ)若x1=4,bnxn-2,Tn是數列{bn}的前n項和,證明Tn<3.

查看答案和解析>>

科目:高中數學 來源: 題型:

設曲線yx2+1在其任一點(xy)處切線斜率為g(x),則函數yg(x)·cosx的部分圖像可以為                                                                            (  )

查看答案和解析>>

科目:高中數學 來源:新課標高三數學等比數列、數列通項的求法專項訓練(河北) 題型:解答題

設曲線y=x2+x+1-ln x在x=1處的切線為l,數列{an}中,a1=1,且點(an,an1)在切線l上.
(1)求證:數列{1+an}是等比數列,并求an
(2)求數列{an}的前n項和Sn.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數fx)=x2-4,設曲線yfx)在點(xnfxn))處的切線與x軸的交點為(xn+1,0)(nN *),其中x1為正實數.

(Ⅰ)用xn表示xn+1

(Ⅱ)若x1=4,記a4 =lg,證明數列{an}成等比數列,并求數列{xn}的通項公式;

(Ⅲ)若x1=4,bnxn-2,Tn是數列{bn}的前n項和,證明Tn<3.

查看答案和解析>>

同步練習冊答案